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On the Asymptotic Performance of Hierarchical
Transforms

Ricardo L. de Queiroz and Henrique S. Malvar

Abstract—We derive explicit formulas for the coding gain of hierar-
chical transforms for a given number of stages, and the asymptotic
gain as this number goes to infinity. We confirm the intuitive result
that hierarchical transforms are not asymptotically optimal, that is,
their coding gains do not approach the inverse of the spectral flatness
measure as the number of stages goes to infinity. Examples comparing
the limits for hierarchical transforms and M-band parallel systems for
AR (1) signals are presented.

I. INTRODUCTION

Systems exploring multiple resolutions of a signal have been
widely employed in image coding, such as those in subband [1],
[2] and pyramid [3] coding. Recently, the concept of wavelets for
subband applications has emerged, and solid relations between
wavelets and filter banks have been stated {4]. A filter bank (FB)
is used either for splitting the spectrum of a signal into its constit-
uent subband signals or for reconstructing the signal from the sub-
bands [5]. Subband systems are widely based on the cascade of
two-band FB’s [5], or TBFB’s, whose filters have a bandwidth of
7 /2. Hence, the spectrum is separated through a binary-tree struc-
ture. We will discuss in this correspondence critically decimated
FB’s [5] and concentrate our attention on hierarchical transforms
(HT’s), which are defined as those where a further level of TBFB
is only connected to the low-pass branch of a previous one, split-
ting the spectrum in octaves, as shown in Fig. 1.

For image coding, it is interesting to measure the compaction
provided by the transform, i.e., how much energy is concentrated
in the lower frequency bands of the transformed signal. Consider
a hierarchical connection of N stages of TBFB’s, with M = 2N
The higher frequency band would have a width of 7/2 and the
lower frequency (baseband) would have a width of «/M. Due to
the critical decimation of the subband signals, for every M input
samples we have also M subband signal samples: one sample from
subband number zero, one from subband one, two from subband
two, four from subband three, and so on, up to M /2 samples from
subband N. Assuming a stationary input signal with known spec-
trum, it is easy to compute the variances of each of the M subband
samples. From these variances, we can measure the transform gain
over PCM [1] (the Gr¢) as
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being o7 the variance of the ith subband signal fori =0, - - - , M
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Fig. 1. Spectrum partitioning in a hierarchical transform. (a) The connec-
tion of TBEB’s in the analysis section. (b) Resulting subbands.

The Grc is well known [1] as a good measure of the compaction
potential of a transform. In [2, ch. 4] Grc Wwas also used for mea-
suring the performance of hierarchical systems. The purpose of this
correspondence is to compare the performance of hierarchical and
parallel filterbanks, in terms of Grc. Although parallel systems are
asymptotically optimal (maximum Gr¢) for any input spectrum as
the number of subband increases to infinity, we will show in Sec-
tion II that the same does not hold for hierarchical systems when
the number of stages goes to infinity. In Section III we will evaluate
the performance bounds for HT’s for AR (1) input signals, and we
will also compare the computational complexities of HT’s and par-
allel filter banks. Our results are valid for one-dimensional signals;
the extension for two-dimensional signals is quite simple if we as-
sume separate signal models and row-column processing [1].

II. IDEAL FILTERS AND LIMITING BEHAVIOR

An M-band FB (MBFB) splits the signal into M bands of width
x /M. The M filters that would maximize the Grc must have infinite
length and ideal frequency response [2, ch.1]. Therefore, the vari-
ance for each band would be exactly the integral of the power spec-
tral density (PSD) S,(e/*) of the input signal x(n) along that band.
This is consistent with the fact that a FB with filters of length L =
AM have selectivity and coding gain increasing with the overlap-
ping factor \, as we go from a block transform (A = 1, as in the
DCT and KLT) to lapped transforms (A > 1) [9].

It is well known that for M = o the Gyc of MBFB’s tends to
the inverse of the spectral flatness measure [1]

15 S.(e™) dw
T Y0

Gyc = 10 log)g 2)

exp [— S In S.(e’) dw]
T Jo

which is a bound for the maximum coding gain of any coder [1].
Thus, an MBFB-based signal coder is asymptotically optimal. In-
tuitively, we see that this happens because the spectral resolution
gets better as M increases, approaching in the limit a continuous
resolution, where the bandwidths of all subbands are arbitrarily
small. With lapped transforms the Grc gets closer to the bound in
(2) than with block transforms, because of the better bandpass fil-
tering characteristics of the former [9].
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As expected, the same relation does not apply to HT’s. An in-
tuitive reason for this is based on the fact that, no matter how many
stages of TBFB’s are cascaded, the higher frequency bands will
have the same width. As the number of stages N increases, only
the baseband is further subdivided. Therefore, there is not a trend
towards a continuous resolution with N = oo.

Recalling that M = 2" for HT’s, and in order to maintain the
same baseband width for both MBFB’s and N-stage HT’s, we will
now evaluate the upper bound for HTs with ideal filters. Let us
define the integral of the PSD as

107
Fa, b) = o Sa Sute’) do. (3)

The filters in the TBFB are assumed to have a gain of V2 in the
passband, in order to keep orthonormality [9]. The subbands are
ordered from B, (the higher frequency band, 7 /2 < w < 7) to By
(the baseband, 0 < w < 7/M). When the ith subband is generated
by an ideal filter with bandwidth [ /2r, 7 /r], where r = 2/, the
variance of the ith subband is given by

x/r
1 . )
m= S P 201 S (/) dw = 2rF(z [2r, /D). )

Accordingly, the baseband variance is
1 /M
NE=T SO 2V (€ dw = MF(O, 7/M). (5)
The ith subband contains M/2r basis functions, and so M/2r

variances for each subband in (1) are equal. The numerator and
demoninator in (1) are given, respectively, by

M—1 N-1
Ly =L+ =¥ crom=1 (6)
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and
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Thus, the Gr¢ for general N can be found recursively as
5 9
Gic(N + 1) = Grc(N) + yloge | 7——— dB (8
2 Sve v
Grc(l) = —5logyp (mofy)  dB. )

Increasing N, Grc converges to a theoretical upper bound that de-
fines the coding performance for HT’s. As we will see in the next
section, this upper bound is lower than the one defined in (2).

III. PERFORMANCE AND COMPLEXITY BOUNDS

Consider an AR (1) signal with intersample correlation p, which
is a good model for images [1]. For this model,

w=h

2
F(a, b) = o arctan Ki—tﬁ) tan (w/Z)}

w=a

Table I lists values of the limiting gain (G7¢) for different p, com-
paring with the equivalent Gy for MBFB’s. For each value of the
parameter, the difference between the limits for MBFB’s and HT’s
are small, but in actual systems the difference would increase due
to two reasons.

TABLE ]
HT AND M-BAND FB Gr¢ (DECIBELS) UPPER
BOUNDS, ASSUMING AN AR (1) SIGNAL, FOR SEVERAL

VALUES OF p
Gre Gic
p Hierarchical M-band
0.800 4.2912 4.4307
0.900 7.0405 7.2125
0.950 9.9248 10.1100
0.970 12.0936 12.2841
0.990 16.8156 17.0115

i) As stated in the last section, MBFB’s have their filter lengths
increasing with M, thus approaching ideal filters as M — oo. For
HT’s only the low-pass branch of a TBFB is connected to another,
therefore only the baseband filter length goes to infinity with M or
N, with all other filter lengths remaining fixed. For example, the
higher frequency band is processed by a filter which normally pos-
sesses 8 or 16 taps, and thus it will not have good selectivity.

ii) TBFB's are generally designed without taking into account
any regularity criteria [4]. As N — oo the resulting baseband filter,
whose length grows with M, has a frequency response that may not
converge to a continuous function, and hence providing a fractal
behavior [4]. In Fig. 2 we have a plot of the magnitude frequency
response of the second basis function of a cascade of Johnston’s
QMF-8A banks [5]. The lack of regularity shows up as undesirably
high sidelobe levels, which lead to a reduction in Grc.

The Gyc for nonideal filters can be found by rewriting (4) and
(5) as

Sg |Hi(e")[* Su(e™) do (10)

EN

o =

By = So |Hy(e’)|? S,u(e’) dw 1y
where o; is the variance of the ith subband, which is generated by
the filter H;(e’®), and By is the variance of the baseband, which is
generated by Hy(e’*). The coding gain can still be computed by
(8) and (9), with 7, replaced by o, and ¢y replaced by By.

The filters H; are defined as those used to select the band B; and
should be generated by a cascade of the TBFB based on the pair of
filters Qp and Q, satisfying the QMF condition {5], [9]} IQ(](ej‘")l2
+ |Qu(e’)|? = 2. Table I shows asymptotic gains (G¥¢¥) for
TBFB’s based on the Haar transform, Johnston’s QMF [5], and
lattice CQF TBFB’s [6], assuming p = 0.95.

Another important issue related to HTs is their computational
complexity. Here, the complexity C will be measured in arithmetic
operations (additions and multiplications) per input sample. With
HT's, not only the Gy is bounded, but also is C. Being C; the
complexity for implementing a single stage, the complexity for N
stages is given by C = 2C,(M — 1) /M, being clearly bounded as
N — o. For N = 3, we have Cyy = 1.75C; < C < 2C; = Cyax-
Complexity bounds for the HT’s based on several TBFB’s are
shown in Table II.

In practical cases in the image coding field, the number of stages
in an HT must be limited, because the image itself is limited and,
after many stages, the lower frequency band becomes approxi-
mately flat [7]. Two through four stages are commonly used [2],
and more stages may not result in any advantage [7]. Suppose now
that adjacent M /2r samples in each band are grouped to form a
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Frequency

Fig. 2. Magnitude frequency response of the second basis function of a 6-stage Johnston-8A-based HT. Note the undesirable
sidelobes in the resulting filter.

TABLE II
COMPLEXITY (OP /S) AND Grc (DECIBEL) BOUNDS, FOR HT’s WITHN > 2,
BASED ON DIFFERENT TWo-BAND CELLS. COMPLEXITY AND GAIN
FOR SOME M-BAND FB’s

TBFB Cumin Cuax GYe®
HAAR 3.50 4.0 8.26
QMF 8A 14.00 16.0 9.68
LAT 8A 15.75 18.0 9.73
QMF 16B 28.00 32.0 9.85
LAT 16B 29.75 34.0 9.86
ELT, M = 16 T c Gre
r=2 12.0 9.84
AN=4 14.0 9.90

M-sample transformed block. If the samples are not quantized with
a temporal adaptation step shorter than 2r samples, all coefficients
in the same band in the same block would have the same number
of assigned bits. This is a common case, but the advantage of HT’s
possessing finer resolution in higher frequencies is diminished. In
this case, the HT would present near the same spatial resolution as
an MBFB (the block size), with the latter presenting better fre-
quency resolution. Therefore, the Gy would play the same role to
measure the performance of both approaches. Tradeoffs between
gain and complexity for MBFB’s are presented in Table II, with
the ELT [8], [9] with M = 16 as example of an MBFB.

IV. CONCLUSION

Hierarchical transforms are asymptotically suboptimal in signal
coding, assuming a wide sense stationary input signal. However,
this bound is not much distant from the maximum gain of M-band
transforms and predictive systems for AR (1) signals, as demon-
strated using the formulas presented in this correspondence. Rea-
sons why HT’s cannot reach their bounds, even increasing the
number of stages to infinity, were also presented.

HT’s are bounded in Grc and complexity. For a straight com-
parison with regular transforms, it is necessary to assume that the
coder is at least block-to-block adaptive, which is a common prac-
tice. Comparing both HT’s and MBFB’s like the ELT, in a com-
plexity/compaction criteria, it is usually possible to find an MBFB
with higher gain and less complexity than those of a hierarchical
transform based on a particular choice for the TBFB.
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On Signal Recovery with Adaptive Order Statistic
Filters

Geoffrey A. Williamson and Peter M. Clarkson

Abstraci—In this correspondence, adaptive order statistic filters are
used to estimate a constant amplitude signal embedded in noise having
unknown statistics. Iterative algorithms are proposed which adapt the
order statistic filter to minimize the mean-square estimation error, both
with and without an unbiasedness constraint. For each case, the algo-
rithm employed is shown to achieve convergence in the mean to the
optimal filter. Properties of the convergence rates are discussed, and
conditions for convergence in mean square are noted.
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