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ABSTRACT

A spatial-resolution reduction based framework for incorporation of a Wyner-Ziv frame coding mode in existing video
codecs is presented, to enable a mode of operation with low encoding complexity. The core Wyner-Ziv frame coder
works on the Laplacian residual of a lower-resolution frame encoded by a regular codec at reduced resolution. The
quantized transform coefficients of the residual frame are mapped to cosets to reduce the bit-rate. A detailed rate-
distortion analysis and procedure for obtaining the optimal parameters based on a realistic statistical model for the
transform coefficients and the side information is also presented. The decoder iteratively conducts motion-based side-
information generation and coset decoding, to gradually refine the estimate of the frame. Preliminary results are
presented for application to the H.263+ video codec.

1. INTRODUCTION

Drawing inspiration from the foundation laid by Slepian-Wolfe [1] and Wyner-Ziv [2] theorems, a great deal of
attention has been devoted in recent years to practical distributed coding of various kinds of sources, notably video [3]-
[10]. A good review of the area is presented in [11]. Besides improving noise resilience, one scenario where distributed
video coding is promising is in creating reversed complexity codecs for power-constrained (hand-held) devices that
capture and encode video either for real-time transmission or storage for subsequent decoding on a PC/server. Unlike
regular broadcast-oriented video codecs with high encoding complexity and low decoding complexity, reversed
complexity codecs have low encoding complexity but high decoding complexity. Prior work [4]-[6] address this
scenario and propose encoding methods requiring no motion estimation at the encoder. Related work [7][8] address SNR
scalability, and [9] address spatio-temporal scalability using distributed coding, but they also enable complexity
reduction within their respective frameworks.

However, the true usage scenario for a power-constrained device may be somewhat different. For instance, low
complexity encoding of captured video may be used only optionally when battery power is low, and bit-stream
scalability may not be required. On the other hand, the same handheld device would very likely need to decode and
playback received content not only from other handheld devices but also from other more powerful devices. While
supporting two separate codecs is one option, it would be more convenient to have a single encoder that acts in two
different modes with the ability to step-down to a lower (reversed) complexity encoding mode as required. Additionally,
on the decoder side, it would be convenient if a lower quality version of the received content could still be played back
immediately by simple decoding, while a higher quality version may be recovered only by a more intensive decoding
process. Thus, a power constrained device should be able to switch to low complexity encoding mode when required,
and its decoder should be able to support both regular decoding for a received regular bit-stream as well as at least
reduced quality decoding for a received reversed complexity mode bit-stream. Further, this enhancement in functionality
should be incorporated by a relatively modest change to an existing regular codec to minimize the impact on footprint,
and facilitate adoption by the industry. Another consideration in our design has been the issue of efficiency. Most
existing work in this area has been too aggressive in reducing complexity leading to a somewhat unacceptable loss in R-
D efficiency. Our approach is moderate in complexity reduction target, but the target efficiency is higher.

We propose a spatial resolution reduction based framework [13] applicable to any existing video codec ([14], [15],
etc.), where the encoding complexity as well as coding rate is reduced by lower resolution encoding through the same
encoder, while the residual is Wyner-Ziv encoded with the rate savings. This enables a useful functionality fully
integrated within an existing codec with minimal overheads. Recent work [12] also explores spatial reduction, but our
mixed resolution approach can potentially yield a better rate-distortion performance by enabling better side-information
generation.

2. SPATIAL REDUCTION FRAMEWORK
In the proposed framework, Wyner-Ziv coding for complexity reduction is applied to only the non-reference frames
of a regular video coder, in order to eliminate drift due to incorrect decoding. These frames are called Non-reference
Wyner-Ziv (NRWZ) frames. The reference frames are coded exactly as in a regular codec as I-, P- or reference B-
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Figure 1. Use of NRWZ frames

frames. Figure 1 shows two scenarios how NRWZ frames can be used. In Figure 1(a), the B-frames of a regular coder
have been converted to B-like NRWZ frames called the NRWZ-B frame, while Figure 1(b), shows a low delay case
where P-like NRWZ-P frames are used instead. Ideally, the number of NRWZ frames in between P frames in both the
cases shown can be varied dynamically based on the complexity reduction target.

A general model for an inter frame encoder is shown in Figure 2(a)(i). Examples of usage of the syntax element object
for reference frames include motion/mode information used for Direct-B prediction for B-frames, and generation of
motion vector predictors for fast motion estimation. The corresponding NRWZ version of the encoder is created as
shown in Figure 2 (a)(ii): First, the frames in the reconstructed frame-stores, as well as the current frame, are decimated
by a factor 2"x2", where n can be chosen based on a complexity reduction target. The syntax element object list for
reference frames are also transformed into a form that is appropriate for reduced resolution encoding. Next, the low-
resolution (LR) current frame is encoded by running through the same frame encoder operating at reduced resolution,
yielding the first part of the frame’s bit-stream called the LR layer bit-stream. The quantization parameter used is the
same as that corresponding to the target quality for the frame. The difference between the full resolution current frame
and an interpolated reconstruction from the LR encoder denoted Fy, is computed to yield a residual frame. Finally, a
Wyner-Ziv coder is used to code this residual, generating a Wyner-Ziv bit-stream layer. The encoder and the decoder
use the same filters for decimation and interpolation.

It is straight-forward to see that the complexity of encoding NRWZ frames is roughly scaled down by a factor (2" +
a) irrespective of the encoder implementation, where the overheads due to decimation, interpolation, syntax element
transformation, and Wyner-Ziv coding operations, are assumed to together contribute a factor a of the regular
complexity of the full resolution encoder. Typically, a is low. A low complexity decoder can still playback a received
sequence with decent quality by decoding only the key frames, and/or by spatial interpolation of the decoded LR layer.
More complex decoding can be performed offline to recover a better quality NRWZ frames.

The decoder architecture for NRWZ frames is shown in Figure 2(b). Figure 2(b)(i) shows the model for a regular
decoder, while Figure 2(b)(ii) shows the high-level decoder model for the corresponding NRWZ version. First, the low-
resolution image is decoded and then interpolated with the same interpolator used in the encoder to yield the interpolated
low resolution reconstruction Fy. Second, F as well as the previously decoded frames in a frame-store denoted FS, are
used in a motion-based processing module to obtain a higher resolution estimate of the frame to be decoded denoted
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Fo™_ We call this the multi-frame semi super-resolution problem, because except for the current frame, the other
frames used are already at higher resolution, albeit corrupted with quantization noise. Third, compute the side-
information residual frame R, = F,"™® — F,to be used for channel decoding. Fourth, the channel decoder decodes the WZ
bit-stream layer based on R, to obtain the corrected residual Ry”. The final decoded frame F| is obtained by computing
Fy =Ry + F,.

In practice, it is more efficient to iterate the semi-super-resolution computation followed by channel decoding in
multiple passes. If SS(F, FS) denotes the semi-super-resolution operation yielding a high resolution version of F based
on the frames stored in FS, and CD(R, by;) denotes the channel decoding operation yielding a corrected residual frame
based on noisy version R and the WZ layer bit-stream by, then iterative decoding comprises for i =0, 1, ..., N-1:

F"™ = SS(F,,FS),R, = F"™ - F,,R“"” = CD(R,,b;,),F,,, = R“” + F,: F, is the final decoded frame after N iterations (1)

3. SEMI SUPER-RESOLUTION SIDE-INFORMATION GENERATION

A block-based scheme for semi super-resolution was used where FS consists of only the past and future reference
frames coded at full-resolution. First, the reference frames are low-pass filtered. Next, for every 8%8 block in frame F,
the best sub-pixel motion vectors in the past and future filtered frames in a certain neighborhood is computed. If the
corresponding best predictor blocks in the past and future filtered frames are denoted B, and By respectively, several
candidate predictors of the type aB, + (1-a)B, with a € {0.0, 0.25, 0.5, 0.75, 1.0}, are tested and the best predictor that
minimizes the SAD of the current block in F; is found. If the SAD for the best predictor is more than a certain threshold
T;, then nothing is done to the block. Otherwise, the block in F; is replaced by the best predictor but with the
compensation now conducted from unfiltered past and future frames. When all blocks in F; have been processed, the
updated frame is referred to as F,*®_ In practice, the low pass filtering operation for the reference frames is eliminated
after one or two iterations as the frame becomes more and more accurate. Further, the grid for block matching is offset
from iteration to iteration to smooth out the blockiness and add spatial coherence. For example, the shifts used in four
passes can be (0, 0), (4, 0), (0, 4) and (4, 4). Finally, the threshold 7; is also be gradually reduced from iteration to
iteration, so that fewer blocks are changed in later iterations.

4. CORE WYNER-ZIV CODER

Our Wyner-Ziv coder operates on the residual error frame in the block-transform domain. The same transform as
used in a regular codec (ex. DCT for H.263+) can be used. In a codec where multiple transforms are used, the largest
one is preferred.
4.1. Encoding

After computing the transform, the transform coefficients denoted by random variable X, are quantized, possibly with
dead zone, to yield a quantization index random variable O: O = @(X, OP), OP being the quantization step-size. Q takes
values from the set Q , = {~¢q, . .~ 10— 10,1, Gy — 1,4, } - Next, cosets are computed based on Q to yield a

coset index random variable C: C = w(Q, M) = y(¢(X, OP), M), M being the coset modulus, using:

V(OM) = O-MQ/M]| , O-M|Q/M |<M /2 @)
O-M|Q/M |-M , Q-M|Q/M |>M /2
C takes values from the setQC:{L_(M_l)/zj,‘__,_l, 0,1,.",L(M_1)/2J}. The above form ensures that coset indices are

centered on 0. OP and M are different for each frequency (i,j) of coefficient x;;.
If quantization bin g corresponds to interval [x/(g), x(¢)], then the probability of the bing € O 0 and the probability

of a coset index ¢ € Q. are given by the probability mass functions:

X, (q)
Po@=[""frdx  pe@)= Ypol@)= Y " fr (x)dx ®)
(q) qeQp1y (q.M )=c qeQp:y (q.M)=c u(q)

Where fy(x) is the pdf of X. Examples of both are shown in Figure 3, for M odd and Laplacian fy(x). Note that the
entropy coder that exists in the regular coder is optimized for the distribution py(g), and is designed to be particularly
efficient for coding zeros. Because the distribution p(c) is also symmetric for odd M, has zero as its mode and decays
with increasing magnitude, the entropy coder for q that already exists in the regular code can be reused for c, and turns
out to be quite efficient. While a different entropy coder designed specifically for coset indices can have some efficiency
advantage, reuse of the same entropy coder minimizes additions needed to the regular codec.

In practice macroblocks are classified into one of several types se{0,1,...,S —1} based on an estimate of the noise

x;,(9)

level between the side-information block and the original. Various cues from the low resolution layer can be used for
this purpose. In this work, a combination of the number of bits spent to code the corresponding residual in the low
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Figure 3. Probability mass function of coset indices

resolution layer and an edge activity measure is used. The coding parameters, Q and M are varied based on s, and are
denoted Q;(s) and M;(s) respectively in the most general terms. Also, only a few low to mid frequency coefficients are
sent for each block while the rest are forced to zero. The maximum number of coefficients transmitted in zigzag scan
order before zero-forcing is determined based on class s, and denoted 7,,,,(s). Figure 4 summarizes the encoding steps.
4.2. Noise model

Ideally, the parameters Q,(s) and M;(s) should be matched to the correlation statistics between the side-information
and the original transform coefficients. The random variable X corresponding to transform coefficients, are assumed to
be Laplacian distributed with std. dev. oy. Further, if ¥ denotes the corresponding (unquantized) side-information, then
we assume Y = X + Z where the noise Z is uncorrelated with X, and modeled as a Gaussian with std. deviation 6,. The
std. dev pair {cy, 67} not only depends on frequency and class, but also on the target quantization parameter QP for the
reference frames and the LR layer. They can be estimated offline based on training sequences for a given semi super-
resolution operation. In Section 5, we will see how the parameters O;(s) and M;(s) should be chosen given the std. dev.
pair {cx, 07}.
4.3. Decoding

For decoding, the minimum MSE reconstruction function X ye(¥,c) based on unquantized side information y and

received coset index c, is given by:
x;(q)

Y [ (nyax
Xye(r0)= E(X 1Y = y,C=¢)= E(X /Y = p,y($(X.0P),M) = ¢) = 00l “)

x,(q)

Y [ ferGoydx

9€Qpw (q.M)=c x,(¢)

where [x/(q), x1(q)] is the interval corresponding to quantization bin q.

The class index s and the frequency (if) of a coefficient not only yields the quantization step-size Q;(s) and coset
modulus M;(s), but also map to the model parameters {cy, 6;}estimated offline to be used for the computation above.
Unfortunately, while exact computation of Eq. 4 is difficult based on the noise model, various approximations or
interpolation on various pre-computed tables can yield a practical solution. Figure 5 illustrates the decoding principle.

The coefficients that were forced to zero during encoding are reconstructed exactly as they appear in the side-
information.

5. PARAMETER CHOICE BASED ON SOURCE AND SIDE-INFORMATION STATISTICS
In this section we study in detail the problem of making the optimal choice of the quantization parameter QP and
coset modulus M for coding a source X with known statistics, where the side information Y available only at the decoder
is obtained by: Y = X + Z, where Z is additive noise uncorrelated with X. Starting from the general formulation of the
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Rate-Distortion characteristics, we will derive the specific characterization for the case where X is Laplacian distributed
with zero mean and variance ze, and Z is Gaussian with zero mean and variance o, Further, we will assume a
deadzone quantizer typically used in a practical codec. We believe that this characterization would be very useful in
many transform-domain Wyner-Ziv coding scenarios since transform coefficients closely follow the Laplacian
distribution. Therefore studying this problem will not only help optimize the coder presented here, but also a variety of
other similar coders.

Specifically, the goal of this characterization would be to obtain the optimal {QP, M} pair that yields reconstruction
quality equivalent to a target quantization step size QP, if regular (non-distributed) coding had been used. This criterion
will be referred to as distortion target matching. The variances of the Laplacian source (6,”) and the additive white
Gaussian noise (o), are assumed to be known. For the specific codec described in this work, the variances for each
coefficient frequency and potentially each class, are obtained from training data for a given block classification scheme,
while QP is the quantization step-size corresponding to the target quality.

5.1. Rate-Distortion characterization

We first consider the rate-distortion functions for various Wyner-Ziv coding scenarios. The first is the one adopted in
this work. The rest correspond to ideal Slepian-Wolf coding, non-distributed coding and zero-rate coding respectively,
used for various comparisons and distortion target matching.

5.1.1. Memoryless coset codes followed by minimum MSE reconstruction with side-information

The probability of each coset index is known from the probability mass function in Eq. 3. Assuming an ideal entropy

coder for the coset indices, the expected rate would be the entropy of the source C:

E(Ry)=H(C) ==Y pe(@log, pe@==2 { ¥ [ fadlog,t X ["" 1 mdy (5
ceQ, Qe qeQyiy(g.M)=c ' q€Qyy (¢.M)=c '
Defining m(Xi) (x)= J.x'ifX (x")dx", we can rewrite:
E(Rye)==2{ 2 Imy(x,(@)—my (x(@)log,{ Y [my(x,(9)) —miy (x, ()]} (6)

ceQc  qeQy:y (.M )=c q€Qy:y (q,M )=c
Assuming the minimum mean-squared-error reconstruction function in Eq. 4, the expected distortion Dy given side
information y and coset index c is given by:

E(Dy 1Y =p,C=¢)= E((X = X, (,0)} /Y = p,C=¢) = E(X*/Y = y,C = ¢) ~ X} (y,¢)’ (7)
using AA’YC(y, ¢)=FE(X/Y =y,C =c).Marginalizing over y and c yields:

E(Dye) = E(X") = [{3 Xye(0:6) pery(C =€/ Y = )} f,(3)dly

—oo cEQe
x,(q) 2 (8)
) Y [y
eQo (q.M)=c X
=0} - [ e, Pen(C=clY =)} f,(n)dy

e z J.fX/Y(x’y)dx

9€Qp (q.M)=c x,(q)

where p.,,(C =c/Y =y) is the conditional probability mass function of C given Y. Noting that,



x;,(q)

Pen(C=cl¥=p)= > [fey(xy)dx ©)

9€Qoy (q.M)=c x,(q)

we have:
X/,(‘I) ?
. Z Ifo/Y(x,Y)dx
9€Qow (q.M)=c x,(q)
E(Dye) = 0)2( - I{Z : xhq(q) My Oy "

—o Qe

X Lo Geydx

9€Qoy (9:M)=¢ x,(q)
Defining:

m? (e, p) =[x iy (X, p)dx’ (11)
we can rewrite Eq. 10 as:

" [ Z[mﬁfl)/Y(xh(q)ay)_mgfl)/Y(xl(q)’y)]j
E(Dye) =0} — [{ 3 St Ly ()dy
- [ i), (x, (q>,y)—m$’3y(x1(q),y)]]

Qo (.M )=c

(12)

5.1.2. Ideal Slepian-Wolf coding followed by minimum MSE reconstruction with side-information
Next, we consider the expected rate and distortion when using ideal Slepian-Wolf coding for the quantization bins.
The ideal Slepian Wolf coder would use a rate no larger than H(Q/Y) to convey the quantization bins error-free. Once
the bins have been conveyed error-free, a minimum MSE reconstruction can be still conducted but only within the
decoded bin. The expected rate is then given by:
E(Ry,)=H(Q/Y)
. (13)
=—[1X Por(@ =417 = )log,py,(Q=gq/Y = )}/ (»)dy

—o q€Qp

== [ {2 1m0, (x5, (), )~ m )y (x,(9), ) Mog,[m )y (x,(9), ) = my (5, (@), )T f ()ely

—0 4€Qg
The expected Distortion Dyy is the distortion incurred by a minimum MSE reconstruction function within a
quantization bin given the side information y and bin index g. This reconstruction function X vo(¥,q) is given by:

X, (q)

[y N (14)
)A(YQ(y,q):E(X/Y:y,QZq):E(X/Y:y,¢(X,QP) =C)= x(q) _ mX/Y(xh(Q)ay)_mX/Y('xl(q)vy)

x,(q) (0) (0)

jf (x,y)dx ) My )y (6,(9), ) = mic )y (%,(9), )

x(q)
Using this reconstruction, the expected Distortion with noise-free quantization bins (denoted Dyy) is given by:

(@) 2
( Ifo/Y(x7 y)dx]

x;(q)

2 | s e 0 @)~ m O @) (15)
E(Dyg) =0 = ydy =0y - 0 0 y (W
Oo=oi- |13 {W} . y)de U on == [ 3 e A s

x ()
5.1.3. Regular encoding followed by minimum MSE reconstruction with and without side-information
Next, we consider the rate and distortion if no distributed coding on the quantization bins were done at the encoder.
In this case, the expected rate is just the entropy of Q.
E(Ry) = H(Q) = = X po(@)log, py(q) = = X [mY (x,(9)) = my” (x,(9))]log,[my (x,(9)) = m¥ (x,(q))] (16)

qeQ qeQy



The decoder can still use distributed decoding if side-information Y is available. In this case, the reconstruction
function and the corresponding expected distortion are given by Eq. 14 and Eq. 15 respectively. On the other hand, if
there is no side-information available, the expected distortion Dy is the distortion incurred by a minimum MSE

reconstruction function just based on the bin index g. This reconstruction function X 0(q) 1s then given by:

x,(q)

L (0)d
Xo(9)=E(X10=¢)=E(X/$(X.0P)=¢)= !Tf o my (x,(9)) = mYy (x,(9)) (17)
’ %(9) m® ()
J‘fX (x)dx ¥ (x,(q))—my’ (x,(9))
x(q)
while the expected distortion is given by:
x;(q) :
[« (x)de 1 1
FDy =0t - S [W) oty I @) - @) (18)

4 m0 (x,(9)-mP (x,(9))

o) x,(q)
o [ | fX(X)de

x,(q)

The overall objective of the distortion matched parameter choice mechanism can now be expressed in terms of the above
rate-distortion functions: Given a target quantization step size QP; for regular encoding and decoding, the target
expected distortion E(Dy) can be readily computed from Eq. 18. The parameters QP and M for memoryless coset codes
should be chosen such that the lowest rate E(Ryc) given by Eq. 5 is obtained, with the expected distortion E(Dyc) given
by Eq. 12 being equivalent to the target distortion.
5.1.4. Zero rate encoder with minimum MSE reconstruction with side-information
The final case is when no information is transmitted corresponding to X, so that the rate is 0. The decoder performs
the minimum MSE reconstruction function X, (y):
Xy (0) = E(X /Y = y) = [ 2y (6, 9)dx = ), (0, 7) (19)

The expected zero-rate distortion Dy is given by:

E(Dy) = 6)2( - T[I

2
es y)de Sy =07 - jmﬁéiy(w,yffy(wdy (20)
5.2. Laplacian Source with additive Gaussian noise
5.2.1. Expressions
While the expressions in Section 5.1 are generic, we now specialize for the case of Laplacian X and Gaussian Z, i.e.:
X\/E 1

2
z

1 = 1 2o
= Tox = kg 21
fX(x) \/EJX e H fZ(Z) \/EGZ e ( )
In the following, we assume:
2 7 .
erf(x)=—=\|e™" dt (22)
=
Then, defining
e
p(x)=e™ (23)
we have
@, x<0 &\/x—)(ﬁx—ax), x<0
mP=1 2 ;o= Y A 24)
L ; 0
2 2f,3(x)( 2 ox) x>

Further defining:
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xX)=er xX)=er 25
nx) =erf(———= \/_UXUZ ), na(x)=erf(——=——*= \/_Uxffz (25)
and using Y=X+Z, we have:
1 2] ; i X)z
fxy(X,y)—me
= - ‘7)2(/0'% +1.0 - 2 -1.0 (26)
fr(v)= me s =~ ﬁ( o [ (D)0 = B(»)’ (1, () - 1.0)]
7)'«/7 l V- x)z ‘7)(
oGy = Jorten) V25(») ARG
) Ao, [n)H0- () (1, (») - 1.0)]
Given fxy(x, y), the moments can now be computed:
1 ) oy (y-x)+20;
l—erf (22— TN222y 0 v <0
O (e 3) = 0 gy am-ton” T T g e
o - ! [1+erf(—o-X(y7x)7\/Eo-§)] x>0
() +1.0- () (,()-1.00] 20,0, ’
) ) 7%(0-‘\, (yfx)—ﬁo'é )j (27)
P AT A LA i A CLANIS LR e
Ox \EUXO'Z Jz <0
O (ey) = [ () +1= B (7, (») = D] ’ )
ot i 3 5 o303
POV 32 T, - + [y =2 "Z][ ity L AN P P
Ox \/EO'XO‘Z \/7 >0
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The erf{) function used in the above expressions for moments and fy(y) can be evaluated based on a 9™ order
polynomial approximation provided in Numerical Recipes [16] . All the expected rate and distortion functions in Section
5.1 then can be evaluated based on these moments in conjunction with numerical integration with fi(y), given the
quantization function ¢ and the coset modulus function i .

5.2.2. R-D curves for deadzone quantizer and optimal parameter choice

We next present the R-D curves for a deadzone quantizer given by:

#(X,0P) = sign(X)x|| x|/ 0P (28)
and the coset modulus function given by Eq. 2, obtained by changing the parameters QP and M. Note that while M is
always discrete, QP can in general be continuous. However we have sampled it at regular intervals in the R-D curves
presented below. On the other hand, for most real codecs, the QP is indeed discrete.

Figure 6(a) and (b) shows two ways of presenting the curves for the specific case of 6x=1, and 6,=0.4. In Figure 6(a)
each R-D curve is generated by fixing M and changing OP at finely sampled intervals of 0.05. However, the following
discussion assumes QP to be continuous. The case QP—o for any M corresponds to the zero-rate case, and yields the R-
D point {0, E(Dy)} where all the curves start, with E(Dy) given by Eq. 20. Alternatively, this point can also be viewed as
the M=1 curve which degenerates to a point. The other extreme is the case where QP—0+. In this case, for any M, each
coset index has equal probability and so the entropy converges to log,M. However, the distortion then becomes the same
as the zero-rate case E(Dy), since the coset indices do not provide any useful information. For the purpose of
comparison, the line with “*’ correspond to the non-distributed coding case with minimum MSE reconstruction using
side-information given by Eq. 16 and Eq. 15 respectively, while the line with diamonds correspond to ideal Slepian-
Wolfe coding followed by minimum MSE reconstruction. Figure 6(b) shows the same results but now using constant QP
curves. Each curve in the figure are generated by fixing QP and increasing M starting from 1 upwards. All the curves
start from the zero-rate point {0, E(Dy)} corresponding to M = 1. This point is also the OP—oo curve that degenerates to
a point. As M—o however, the coder becomes the same as a regular encoder not using cosets. Consequently, each
constant QP curve ends on a point on the curve corresponding to non-distributed coding with minimum MSE
reconstruction using side-information. The line with ‘diamonds’ correspond to the ideal Slepian Wolfe coding case.
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Figure 6. R-D curves obtained by changing OP and M

From the curves it is obvious that not all choices for QP and M are necessarily better than regular coding followed by
minimum MSE reconstruction using side-information. The sub-optimal choices for {OP, M} combination can be pruned
out by finding the Pareto-Optimal set P, wherein each point is such that no other point is superior to it, i.e. yields a
lower or equal distortion at a lower or equal rate (assuming that the rate-distortion points are all distinct). These points
are marked as ‘+’ in Figure 6(c). Now, given a target distortion D, in terms of the quantization parameter QP, for regular
coding with no side-information using Eq. 18, one can search the Pareto Optimal set P for the point that yields the
closest distortion to D,, and choose that.

However, a strategy yielding superior rate-distortion performance is to operate on the convex hull of the set of R-D
points generated by all {OP, M} combinations. The convex hull is a piecewise linear function generated from the Pareto
optimal set of points P by generating an ordered subset of points called the convex hull set H in descending order of
distortion, and joining these points by straight line segments. The procedure is explained below, assuming zero-based
indexing for ordered P and H:

1. Sort the points in P in descending order of distortion.

2. Include first (highest distortion) point of P corresponding to zero-rate in H: H[0]=P[0], np= 1, ny=1

3. While np <|P| (the total number of points in P)

Compute the gradient to the last point included in H to other points in P with lower distortion. Choose the
point that yields the steepest negative gradient, and include that point in the convex hull set:

k= e m‘lr‘l {(Dupy, -1 = Do) /R,y = Rop))}s Hlng 1= Pk’ ], ny =ny +1, ny =k’ (29)
=np+l,...|P-1
where Dy (Dppyp) and Rypy (Rppip) are the distortion and rate values corresponding to the ith point in the set A

(P).
End.



4. Join the resultant n;; ordered points in A by straight line segments.

Figure 6(c) shows the points included in the convex hull set A as ‘o’. The convex hull is obtained by joining them
with straight line segments. Note that this piecewise linear convex hull is not guaranteed to have points that are obtained
with a specific {QP, M} combination, except at the points in the convex hull set. However, the following method can be
used to probabilistically operate at any intermediate point. Given a target OP, and corresponding distortion D,, search the
decreasing distortion ordered set H to find where D, lies. If D; is higher than the zero-rate point distortion, i.e. D, >
Dyyg), use zero-rate encoding. Otherwise, if D; lies between the ™ and (i+1)th points, i.e. Dyp;) = D; > Dpy;1qp, calculate o =
(Dri—=D)/(Dppii— Dipiy); then use a uniform pseudo random number generator in the encoder to choose parameters
{OPu1iy, Mypa}y with probability 1—o and {QPpyii13, Mupi1} With probability a, for each sample encoded. The decoder is
assumed to use a synchronized pseudorandom number generator with the same seed to obtain the right parameters for
decoding each sample. Thus, all points on the convex hull are in fact achievable, and the convex hull should be chosen
as the optimal operational R-D curve.

To summarize, given the statistics {cy, 67}, each target OP, (and consequently D,) would map to a 5-tuple {QP;, M,
OP,, M, a} where parameters {QP;, M,} and {QP,, M,} are chosen with probabilities (1— o) and a respectively. This
mapping would typically be obtained offline for each class based on known class statistics {cy, 67} using training data,
and stored in the form of a table in the encoder and decoder to perform the encoding and decoding accordingly. An
example of such a table generated for 6y=1, 6,=0.4 is shown in Table 1, where the QP are sampled at intervals of 0.05.
Here all entries with QP = oo, M=1 correspond to zero rate. Any entry with M = oo correspond to coding without cosets
but using side-information based minimum MSE reconstruction. Note that as the target OP, increases it becomes optimal
to just use zero-rate encoding.

Table 1. Look-up table from target QP, to 5-tuple parameters for 6y=1, 6,=0.4

QP QP M, oP, M, [V}

0.05 0.10 32 0.05 ) 0.93314
0.10 0.15 21 0.10 32 0.90638
0.15 0.20 15 0.15 20 0.98211
0.20 0.20 14 0.20 15 0.39819
0.25 0.30 9 0.25 11 0.96786
0.30 0.35 7 0.30 9 0.87608
0.35 0.40 6 0.35 7 0.92355
0.40 0.45 5 0.40 6 0.74711
0.45 0.55 4 0.50 5 0.97749
0.50 0.55 4 0.50 5 0.03730
0.55 0.70 3 0.60 4 0.54183
0.60 ) 1 0.75 3 0.99238
0.65 ) 1 0.75 3 0.80090
0.70 ) 1 0.75 3 0.59556
0.75 ) 1 0.75 3 0.37739
0.80 ) 1 0.75 3 0.14747
0.85 o0 1 o0 1 0

0.90 o0 1 o0 1 0

0.95 o0 1 o0 1 0

1.00 o0 1 00 1 0

Figure 6(d) shows the convex hulls obtained using the above procedure for differing values of 6; while fixing ox = 1.
As expected, the curve shifts up with increasing o7. The figure also includes the R-D curve for regular non-distributed
coding using minimum MSE reconstruction without side-information, generated by varying OP, with ox = 1 (Eq. 16
and Eq. 18). The corresponding distortion D, on this curve for each QP is to be matched to the convex hulls for the
given statistics. Note for for smaller values of 6z, a significant amount of the distortion range is covered simply by using
zero-rate encoding with side-information based decoding.

5.2.3. Optimal parameter choice for a set of variables with different variances and correlation statistics

We next address the problem of optimal parameter choice for a set of N random variables: X, X1, ..., Xy_1, where X; is

assumed to have variance o° X, and the corresponding side information Y; is obtained by: Y; = X; + Z,, where Z; is i.i.d.
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Figure 7. R-D results for various sequences

additive Gaussian with variance GZZI_. This is exactly the situation that would arise in a typical (orthogonal) transform
coding scenario, where each frequency can be modeled to have different statistics. The expected distortion is then the
average (sum/N) of the distortions for each X; and the expected rate is the sum of the rates for each JX;. In order to make
the optimal parameter choice, first the individual convex hull R-D curves must be generated for each i. Using typical
Lagrangian optimization techniques, the optimal solution for a given total rate or distortion target should be such that
points from the individual convex hull R-D curves are chosen to have the same local slope A. The exact value of A
should be searched by bisection search or a similar method to yield the exact distortion target or the rate target. Note that
since the convex hulls are piecewise linear, the slopes are decreasing piecewise constants in most parts. Therefore,
interpolation of the slopes is necessary under the assumption that the virtual slope function holds its value as the true
slope of a straight segment only at its mid-point.

6. RESULTS ON H.263+

A reversed complexity coding mode based on the above principles has been integrated within the H.263+ video
codec. In this mode, the B-frames in the regular codec are replaced by NRWZ-B frames. The base layers of the NRWZ-
B frames are coded at quarter resolution. In order to handle the Direct-B prediction modes in NRWZ-B frames, the
motion vectors and modes from the full-resolution P-frames, are transformed appropriately.

The coding performance of a reversed complexity codec operating in IZPZPZPZPZ.... mode with ‘Z’ frames
indicating NRWZ-B frames, is compared against a H.263+ coder, operating in IBPBPBPBPB... mode, in Figure 7 for
the Foreman, Akiyo, Silent and Mobile CIF sequences. The encoder motion estimation complexity (EMEC) index shown
compares the average per frame complexity due to motion estimation of each encoder in relation to that of a regular P-
frame. The results are quite comparable for three of the sequences, especially at higher rates even though the IZPZP...
codec has an EMEC index half that of the IBPBP... codec. Interestingly, at some rates, the proposed coder actually
performs better than the regular codec, because the side-information generation operation has an effect of post-
processing, even though the exact component in the side-information generation operation that is equivalent to post-




processing cannot be separated. For the Mobile sequence however, there is substantial quality degradation apparently
due to failure of the side-information generation process.

7. CONCLUSION
The design principles and preliminary results for a reversed complexity coding mode based on Spatial reduction, as
applied to H.263+ is presented. However the methodology is generic enough to allow incorporation of a similar mode in
other codecs, notably H.264/AVC. Future work would involve improving the side-information generation process which
in fact holds the most potential for improving the overall performance, using better entropy coding of the Wyner-Ziv
layer, and using more powerful channel codes for the Wyner-Ziv layer.
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