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Abstract—Algorithms for creating saliency maps are well
established for images, even though there is no literature on such
methods for point clouds. We use orthographic projections in 2D
planes which are subject to well established saliency detection
algorithms to create a 3D saliency map. The results of each
saliency map are projected to the 3D voxels and the results of the
many projections are used to generate a 3D saliency map. Simple
compression tests were carried using soft region-of-interest maps.
Results have shown an increase in the quality of the voxels inside
the selective regions of increased levels of interest.

Index Terms—Saliency map, point cloud, RAHT.

I. INTRODUCTION

The proliferation of computational imaging for 3D detection
and the increase of 3D applications such as autonomous
navigation and augmented reality made point clouds (PC)
increasingly important [1]. A point cloud is a set of points in
space represented in a three-dimensional (X, Y, Z) coordinate
system. It commonly serves the purpose of representing the
outer surface of an object or scene. It is represented by its
geometry and attributes [2]. The geometry part of a point cloud
is described by a set V' with the coordinates of all points:

Vo= {vi} = {(@i i, z:)}- ey

Attributes can be represented in a similar way by a set of C'
attributes where each entry in that set has D attributes:

C ={c;} = {(a1, a2, ...,aip)} )

Commonly, attributes include color components, but may also
include transparency, normal vectors, motion vectors, and
more.

Point clouds may have regions of interest (ROI) with special
significance or relevance [3]. These regions can be used to
selectively increase fidelity during compression, as done for
images and videos [4].

Despite the vast available literature for the determination
of saliency maps and ROI in images and videos (see, for
example, [5] and [6]), there is no literature available on the
creation of point cloud saliency maps and the work on point
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cloud segmentation is still under development [7]-[9]. Here,
we propose saliency maps for point clouds.

Saliency maps in 2D have been studied for many years
[10]-[14], including technologies such as neural networks and
others.They were developed with the purpose of identifying,
in images, regions that receive greater attention in human
visualization. According to [15], [16] the purpose of a saliency
map is to represent the visibility, or salience, at all locations
in the visual field by a scalar quantity. It is a topographical
organized map that indicates the location of salient objects in
the visual field, and not what such objects are.

II. PROJECTION-BASED POINT CLOUD SALIENCY MAP
CREATION

Many computer vision algorithms have been developed and
are extensively studied for the 2D image case, including those
to create saliency maps. We recognize the level of difficulty to
develop solutions that directly act on a sparse 3D space, and
we borrow solutions for the problem in 2D space. Saliency
maps are generated on the 2D space, and then mapped from
the image pixels to the corresponding 3D voxels.

Information from multiple projections is aggregated to ob-
tain information about the entire point cloud. The idea is
illustrated in Fig. 1.
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Figure 1. Steps for the creation of a saliency map using two-dimensional
projection of a point cloud.

We begin by orthographically projecting the point cloud P
onto a 2D plane I. If we imagine a voxel as a 3D cube and
a pixel as a square element, the size of the cube side, and
if we orthogonally project the cube into any of its six faces,



we may be able to uniquely map the voxel face to a pixel in
the 2D projection plane. Hence, the P — I mapping would
be reversible. If we project at any other oblique direction,
the cube projection would not be square, but a more complex
polygon. Such a projection does not fit into a square pixel
and partially projects onto many adjacent pixels. To cope with
that situation, there are many solutions with varying degrees of
accuracy and complexity. In P — I and I — P, one solution
is to compute the voxel or pixel color by linear combinations
of the various partial projections.

An alternative is to increase resolution by replicating voxels
and pixels and simply assigning the voxel color to the pixel
with the largest corresponding projection area. In the back-
projection I — P we can mark the voxel whose center is the
closest to the projection line from the center of a marked pixel
in the 2D projection plane. After all voxels are marked, the
point cloud should be reduced (downsampled or averaged) to
the correct resolution. Similar interpolation issues arise if one
does not assume cubic voxels nor square pixels. Nevertheless,
one should make sure that we are able to map voxels to pixels
and to map specific pixels back to voxels.

The projection-based saliency map creation algorithm works
as follows:

« Map the 3D voxels into a plane along the direction (6, ¢),
where —90° < 6 < +90° is the elevation and 0° < ¢ <
360° is the azimuth, see Fig. 2.

e Generate the 2D saliency map, assigning the weight to
each pixel that corresponds to a voxel.

o Map the pixels again to the 3D voxels. Since one pixel
can be mapped to multiple pixels, one may use rounding
or other decision process.
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Figure 2. Representation of a point cloud and its elevation angle and azimuth.

With the above algorithm, given a voxelized point cloud
and a pair (0, ¢) we obtain the salience value for a set of
voxels. We, however, test many directions, since we do not
know which orientation would be the most relevant for a user
visualization. We scan the (0, ¢) space by spanning 6 from

Omin 10 Opgs in steps of A6 and ¢ from @i 1O Grge in
steps of Ag.

The algorithm is generic by nature and to construct the
saliency maps we use the algorithm developed by Walther and
Koch [5]. In the examples in this work, we used 6,,,;,, = —70°,
Omaz = 90°, (bmin = 0° ®mac = 359°, Al = A¢ =
10°. Hence, Ny = 17 and N4 = 36 so that we perform
N, = 612 projections for each point cloud. After each
projection, the salience value of each pixel is re-projected onto
the corresponding voxel and added to the already existing
voxel salience value. After the 612 projections, the salience
value of a voxel is the sum of the salience values of the
corresponding pixels in each projection. This method for
merging the attributes is similar to the one presented in [16].
At the end of all projections, the voxels’ salience values are
normalized to a continuous range from 0.0 to 1.0. In order
to smooth the transition between the salient region and the
non-salient region, we propose a spatial low-pass filter with a
cubic kernel of size 9 x 9 x 9.

In summary, the algorithm is:

e For 0 = 0, : AO : 0,00

For ¢ = ¢min : A¢ ! maz

-project the point cloud onto direction (6, ¢);

-run the saliency map creation algorithm;

-re-project the salience value of the pixels onto the voxels;

« Normalize the salience values to a range of 0.0 to 1.0;

« Filter the saliency map with a low-pass filter.

III. ENCODING POINT CLOUDS WITH SOFT REGIONS OF
INTEREST

When compressing a point cloud, there is a trade off
between the number of bits spend to encode the point cloud
and the quality of the reconstructed point cloud at the decoder.
The higher the quality, the more bits are necessary. Salient
regions are supposed to have a higher semantic or perceptual
significance than the rest of the point cloud. Therefore, an
encoder that prioritizes the quality of salient regions, (or ROI),
in detriment to other regions, tend to produce reconstructed
point clouds with a better subjective quality, when compared to
an encoder that treats all regions equally, for the same number
of bits.

In a recent work, it has been shown the compression of
point clouds incorporating ROI using the Region Adaptive
Hierarchical Transform [3]. We extend this work to allow for
the compression using saliency maps. In [3], was assumed that
voxels belong to only two regions: ROI and non-ROI. For
the saliency maps in this work, there is a smooth transition
between voxels that are completely salient to those that are
completely non-salient.

The saliency map needs to be conveyed to the decoder. We
quantize the saliency map in Lggjience levels as

Sq{n] = \_S[n] X LsalienceJa 3)

where 0 < S[n] < 1 is the n-th saliency value and S, [n] is the
n-th quantized saliency value. Thus, the saliency map can be



represented by integers where S; = Lsaiience —
the most salience.

We sort the quantized saliency map according to the morton
codes of the geometry of the corresponding voxel [17]. Morton
code sorting preserves neighborhood. We encode the saliency
values with adaptive run-length / Golomb-Rice encoding
(RLGR) [18]. RLGR performs better when there are long
sequences of zeros. As neighboring voxels tend to have similar
salience, we take differences of the quantized saliency map
prior to encoding with RLGR as Sg[1] = S,[1] and

1 represents

Sa[n] = Sy[n] — S¢n—1], Vn >1, 4)

where Sy[n] is the n-th differential quantized value.

The encoder in [3] attributes a weight to each voxels as a
non-negative integer value. The higher the weight, the better
the quality. With the saliency map, the encoder and decoder
can compute the weight for each voxel. Unoccupied voxels
have a weight of 0, occupied voxels that are completely non-
salient have a weight of 1, and completely salient occupied
voxels have a weight of Wgror > 1. For voxels in the transi-
tion, the weight is linearly interpolated. Given the weights for
each voxel, the encoding of the point clouds follows as in [3].

IV. RESULTS

To test the proposed projection-based method for point
cloud saliency map creation, we used 5 point clouds: Boxer,
David, Longdress, Loot and Soldier, all voxelized with depth
10 (i.e. 1024 x 1024 x 1024 voxels) [19], [20], [21].

The results are presented in Fig. 3 trough 8 as a saliency
map (i.e. gray scale) and in a hot-cold map, where colors closer
to red represent a higher saliency value and colors closer to
blue are associated with a lower saliency value.

It is noticeable that, in all the examples, the most salient
region contains the face, or part of it, and in some cases (as in
Fig 6 and Fig. 8) a region close to the face is also considered
salient.

In our tests we varied the quantization step from 2 to 128
and the ROI weights (Wgror) from 1 to 64. The saliency
map was quantized in 5 levels (Lsqiience = D). The rate
is computed as bits per occupied voxels (bpov) and the
quality of the reconstructed point cloud by the peak signal
to noise ratio of the luminance channel (PSN Ry ). Table I
summarizes the encoder performance using the saliency maps.
The results present the average PSN Ry difference (BD-
PSNR) [22] obtained for the point clouds tested in this work,
comparing those curves that prioritize the ROl (Wgro; > 1)
against the curves that equally treats all voxels (Wgror = 1).
We can observe that as the Wros increases, the quality of
reconstructed voxels that are completely non-salient (S, = 0)
decreases, while the quality of those that are salient increases
at a larger rate (as in Figures 9 and 10). The gain in quality is
higher for higher values of Sy, as expected (see figure 11). The
higher the value of Wro7, the more bits are spent to encode
the ROI in detriment to non salient voxels. As there are fewer
voxels in the ROI compared to those outside the ROI, a small
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Figure 3. A view of point cloud ”David” and its saliency and hot-cold maps.

Figure 4. A view of point cloud "Boxer” and its saliency and hot-cold maps.
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Figure 5. A view of point cloud "Loot” and its saliency and hot-cold maps.

Figure 6. A view of point cloud “Longdress” and its saliency and hot-cold
maps.



Figure 7. A view of point cloud ”Soldier” (frame 537) and its saliency and
hot-cold maps.

Figure 8. A view of point cloud ”Soldier” (frame 695) and its saliency and
hot-cold maps.

decrease in the quality of the voxels outside the ROI results
in a big increase in the quality of those inside. The number
of bits spent to encode the saliency map is accounted in the
overall bit rate, except when Wgro; = 1, since there is no
need to convey the saliency map to the decoder.

Table I
AVERAGE BD-PSNR COMPARING THE CURVES WITH Wgror > 1
AGAINST THOSE WHEN W1 = 1 FOR ALL POINT CLOUDS TESTED IN

THIS WORK.

Wror | Sq=0 Sq=1 Sq=2 S,=3 S,=4
2 043 -048 135 1.16 1.20
4 -0.54 130 243 2.65 3.06
8 -0.65 2.40 3.88 439 5.06
16 -0.82 3.83 5.64 7.07 7.42
32 -1.04 5.60 7.82 9.61 10.28
64 -1.31 7.79 1061 1223 1643

Figure 9 shows results for rate-distortion curves for the point
cloud “Longdress” using the weighted PSN R. The weighted
PSN R uses the weights of each voxel to compute the average
squared error as it was shown in [3].

In Fig. 12, the point cloud Longdress is encoded with differ-
ent Wror. With Wgror = 1 the point cloud is encoded with
a quantization step of 128. For Wgro; = 16 the quantization
step is adjusted to 212 so that both encoded files have the
same bit-rate of 0.175 bpov. Subjectively, Fig. 12(b) seems to
have a better quality. Figure 13 shows a close up of the salient
region for the reconstructed point clouds shown in Fig. 12.
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Figure 9. Rate-distortion curves for the point cloud “Longdress” using the
weighted PSNR for different values of the ROI weights.
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Figure 10. Rate-distortion curves for the point cloud ”Longdress” for different
values of the ROI weights.
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Figure 11. PSNR for the voxels inside the ROI with Wgror = 32 for the
”Longdress” point cloud.



(@) Wror =1 (b) Wror =16

Figure 12. Point cloud Longdress coded with different weights for voxels in
the ROIL. The Qstep was adjusted in order that the files would have similar

sizes.
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Figure 13. Close up in the salient region of the reconstructed point clouds
shown in Fig. 12.

V. CONCLUSIONS

We introduced saliency maps for point clouds by using es-

tabli

shed algorithms and concepts for the creation of saliency

maps in 2D images. Two-dimensional projections of different
views of the point cloud are used to find saliency maps which
are re-projected onto the point cloud. The results for the
many views are fused into one saliency map for the whole
point cloud. It was also presented a method for point cloud
compression based on the saliency map as soft regions of
interest. Results have shown a increase in the quality of the
voxels inside the selective regions of higher levels of interest.
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