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ABSTRACT

Virtual view synthesis is a key component of multi-view

imaging systems that enable visual immersion environments

for emerging applications, e.g., virtual reality and 360-degree

video. Using a small collection of captured reference view-

points, this technique reconstructs any view of a remote scene

of interest navigated by a user, to enhance the perceived

immersion experience. We carry out a convexity characteri-

zation analysis of the virtual view reconstruction error that is

caused by compression of the captured multi-view content.

This error is expressed as a function of the virtual viewpoint

coordinate relative to the captured reference viewpoints. We

derive fundamental insights about the nature of this depen-

dency and formulate a prediction framework that is able to

accurately predict the specific dependency shape, convex or

concave, for given reference views, multi-view content and

compression settings. We are able to integrate our analysis

into a proof-of-concept coding framework and demonstrate

considerable benefits over a baseline approach.

Index Terms— Multi-view Imaging, Virtual View Syn-

thesis, Depth Image Based Reconstruction

1. INTRODUCTION

We are entering an era of transformational changes in digital

content consumption and experience, spurred by advances in

imaging and cyber-physical/human systems. Emerging tech-

nologies such as virtual/augmented reality [1], 360-degree

video [2], plenoptic cameras [3], and multi-view imaging [4]

are enabling the design of novel applications that immerse

us into volumetric visual representations that we can actively

explore, navigate, and interact with. Thus, the (flat/2D and

passive/remote) digital media experience, as we know it (for

some time now), will never be the same. Simultaneously,

these transformative changes are driving innovation across

our society, by helping introduce diverse applications with

impact on education and training, health-care, telecommut-

ing, etc. Many further advances are expected on the road to

immersive communication [5].
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Emerging applications for reconstructing remote environ-

ments for volumetric visual immersion such as virtual reality

and 360-degree video rely on multi-view imaging and virtual

view synthesis [6] to enable such experiences. In particular,

using a small collection of captured viewpoints, virtual view

synthesis reconstructs any viewpoint of a remote scene of in-

terest navigated by a user, to enhance his sensation of remote

immersion. It is critical to have an understanding of the recon-

struction error (or fidelity) of viewpoints synthesized thereby,

to assess the quality of experience delivered to the user. Such

knowledge can enable development of efficient resource allo-

cation strategies. Bit allocation among captured viewpoints

may, for instance, be used to guarantee a minimal quality of

service or to optimize a global quality metric among multiple

users. The problem is challenging due to the complex inter-

dependencies that arise in this context between the fidelity of

the captured data and the relative position of the virtual views

in the aggregate view space navigated by the user.

View synthesis reconstruction error within multi-view

plus depth coding systems has been reported [6] as a concave

curve in which the mean-square error (MSE) as a function of

virtual viewpoint position reaches a maximum at the virtual

viewpoint farthest from the reference captured viewpoints

used in its synthesis. Nevertheless, coding conditions im-

posed upon reference images can significantly alter MSE

behavior, to the point where the expected concave shape

becomes convex as shown in Fig. 1.

Understanding and modeling such synthesized view dis-

tortion is essential to numerous multi-view video compres-

sion and streaming applications. For instance, [8] considers

multi-view multicast, where the captured video and depth

signals are encoded using the scalable video coding standard

H.264/SVC [9], and each client is served two reference video

and depth signals. A linear synthesis view distortion model

is borrowed from [10] and its coefficients are estimated from

data. Furthermore, in [11], joint source-channel coding for

multi-view video multi-cast has been studied, while [12]

investigates user-action driven view and rate scalable multi-

view coding. Both of these studies leverage an earlier cubic

synthesized view distortion model derived in [13]. Similarly,

a related distortion model has been pursued in [14]. Char-
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Fig. 1. MSE of virtual views at various viewpoint positions

synthesized from coded reference images 2 and 3 of Ballet

[7]. Concave curvature, when depth images are compressed

at QP:37, becomes convex as depth compression transitions to

QP:7. All texture images were compressed at QP:37 and MSE

is relative to synthesis from uncompressed reference images.

acterizing the rate-distortion trade-offs of view synthesis has

been also studied in [15]. Another linear distortion model

has been examined in [16], comprising three terms: video

coding-induced distortion, depth quantization-induced dis-

tortion, and inherent geometry distortion. Its practicality is,

however, restricted by its high complexity. The impact of

depth-map coding on virtual view synthesis is studied in [17],

but the impact of texture coding has not been integrated into

the analysis. Recently, in [18] a linear distortion model has

also been adopted to optimally allocate bit-rate in response to

viewer attention.

Linear modeling constitutes a simple, yet coarse approxi-

mation to reconstruction errors such as those of Fig. 1. More

complex cubic models, developed within aforementioned re-

lated work, have also failed to adequately capture the degree

of variation present in synthesized view distortions. Towards

this goal, we carry out an analysis of the reconstruction er-

ror of a virtual viewpoint as a function of its relative posi-

tion with respect to the reference captured viewpoints used

to synthesize it. We derive fundamental insights about the

nature of this dependency and formulate a prediction frame-

work that is able to accurately predict the specific dependency

shape, convex or concave, for given viewpoints, multi-view

content and compression settings. In bit allocation strategies

aimed at optimizing delivered quality in real time, convexity

characterization can serve to determine maximum MSE, in

the convex case, or estimate viewpoint position of such max-

imum in a computationally-efficient manner, without explicit

virtual view synthesis. In this sense, it offers improved preci-

sion and speed over prior modeling approaches. Furthermore,

once we establish the convexity mode, quick analytical char-

acterization of the distortion dependency can be established,

for more advanced bit allocation analysis, inclusive of having

diverse objective functions. On the other hand, without such

a facility, optimal bit allocation would need to explore a com-

plex discrete problem that would be computationally expen-

sive and prohibit real-time operation. We are able to integrate

our analysis into a proof-of-concept coding framework and

demonstrate considerable benefits over a baseline approach.

Our preliminary results are very promising and motivate fur-

ther investigation.

2. SYNTHESIZED VIEW DISTORTION MODEL

Denote the captured texture and depth images of the left ref-

erence view 0 as t0 and d0. Similarly, denote the same for

the right reference view 1 as t1 and d1. A virtual view tv is

obtained by warping the reference views 0 and 1 to the view-

point 0 ≤ v ≤ 1 using DIBR [19] techniques to generate

two projections t′
0

and t′
1
. Warping ensures that the pixel n

of the virtual view tv, denoted as tv(n), is obtained by en-

forcing a disparity shift exploiting the information captured

in the depth images so that t′
0
(n) = t0(n0 − vd0(n0)) and

t′
1
(n) = t1(n1 + (1 − v)d1(n1)), where n0 and n1 are the

corresponding pixel coordinates in the left and right reference

views, respectively. However, due to various constraints in

realistic circumstances such as occlusion and rounding to the

integer pixel coordinates, these two projections are not per-

fectly identical. For that reason, the pixels in the virtual view

are blended using the following relation [20]:

tv(n) =















(1− v)t′0(n) + vt′1(n) t′0(n), t
′
1(n) 6= 0,

t′0(n) t′1(n) = 0,
t′1(n) t′0(n) = 0,
0 t′0(n) = t′1(n) = 0

, (1)

where t′
0
(n) = 0 and t′

1
(n) = 0 represent unavailability of

the respective pixel from the left or right reference.

Encoding the texture and depth reference images impacts

the quality of the virtual view obtained by (1). To estimate

the MSE of the encoded virtual view, denote the encoded ver-

sions of t0, d0, t1 and d1 as t̃0, d̃0, t̃1 and d̃1, respectively.

Furthermore, denote the encoded versions of the warped ref-

erence textures as t̃′
0
(ñ) = t̃0(n0 − vd̃0(n0)) and t̃′

1
(ñ) =

t̃1(n1 + (1 − v)d̃1(n1)). Consequently, denote the virtual

view (1) obtained using encoded components as t̃v(ñ).
Now, the MSE of the virtual view can be expressed as

Dv = E[(t̃v(ñ)− tv(n))
2]. (2)

To estimate the contribution of the 4 cases in (1) to the MSE

in (2), denote the respective proportions of pixels synthesized

using each case as cB(v), c0(v), c1(v) and c∅(v), where the

sum cB(v)+ c0(v)+ c1(v)+ c∅(v) = 1 is constant across the

viewpoint coordinate v. Note that c0(v = 1) = c1(v = 0) =
0 because all pixels from the reference views are available at

the particular reference viewpoints. Assuming the reference

viewpoints are close enough so that occlusion or holes in 3D
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Fig. 2. Captured numbers of pixels that contribute to virtual

views across the viewpoint coordinate 0 ≤ v ≤ 1 for the 4

cases in (1): (a) Ballet (C0 = 16.34%, C1 = 13.35%), (b)

Breakdancers (C0 = 5.24%, C1 = 4.62%).

objects do not affect significantly these numbers, we adopt

linear models for c0(v), c1(v) and we neglect c∅(v), i.e.,

c0(v) = C0 · (1− v),
c1(v) = C1 · v,
c∅(v) = 0,

(3)

where the constants C0 and C1 can be easily estimated as

C0 = c0(v = 0) and C1 = c1(v = 1). Note that the number

cB(v) is also linear in v, that is, cB(v) = 1−C0+(C0−C1)v.

This model is verified in our experimentation for several data

sets and various encoding settings. An example is demon-

strated in Fig. 2, where the number of pixels is plotted against

the viewpoint coordinate v for two data sets. Furthermore, the

model remains accurate for a range of encoding rates with the

parameters C0 and C1 unchanged.

To simplify estimation of the MSE from (2), the error can

be split into 3 terms as

Dv = E[(t̃v(ñ)− tv(ñ) + tv(ñ)− tv(n))
2] =

= E[(t̃v(ñ)− tv(ñ))
2] + E[(tv(ñ)− tv(n))

2] +

+ 2E[(t̃v(ñ)− tv(ñ))(tv(ñ)− tv(n))]. (4)

The first term of (4), E[(t̃v(ñ) − tv(ñ))
2], represents the

error caused by encoding only the texture pixel intensities,

while the pixel coordinate ñ remains the same. Hence, the

contribution of this term to Dv comes from the three cases in

(1) that are weighted by cB(v), c0(v) and c1(v),
1 respectively.

As a result, this term consists of three components factored by

the MSE of the left and right reference texture images, Dt0

and Dt1 , respectively, and by the cross-correlation of the en-

coding errors Et0,t1 = E[(t̃′
0
(ñ) − t′

0
(ñ))(t̃′

1
(ñ) − t′

1
(ñ))].

Note that, in the modeling, we assume that neither the pixel

coordinate error caused by encoding the reference depth im-

ages nor warping the pixels influences the encoding MSE of

the reference texture images and, thus, E[(t̃′
0
(ñ)−t′

0
(ñ))2] =

E[(t̃0(n)− t0(n))
2] = Dt0 and similarly for Dt1 .

The second term of (4), E[(tv(ñ)− tv(n))
2], corresponds

to the error introduced by displacement of the synthesized

pixels in the virtual view owing to the encoding error of the

reference depth images. Similarly to [14], we estimate this er-

ror by assuming the Gauss-Markov model for texture pixels,

that is, t(n + 1) = ρt(n) + ω(n), where ρ is the correla-

tion across neighbor pixels, ω(n) the Gaussian noise with the

variance σ2 = (1 − ρ2)σ2

t and σ2

t = E[t2(n)] is the mean

energy of the texture image. It follows from this model that

the absolute difference |t(ñ)− t(n)| is given as

|t(ñ)−t(n)| = (ρ|ñ−n|−1)t(n)+

|ñ−n|−1∑

m=0

ρmω(ñ−m). (5)

Since, in natural images, the correlation 0 ≤ ρ ≤ 1 is nearly

1, we use the approximation ρn ≈ 1 − (1 − ρ)n. Hence,

applying this to (5) and accumulating the influence of the

three cases weighted by cB(v), c0(v) and c1(v), the second

term of (4) is derived as the sum of three components fac-

tored by the mean-absolute error of the left and right reference

depth images, Ad0
and Ad1

, respectively, and the error cross-

correlation Ed0,d1
= E[(d̃0(n0)−d0(n0))(d̃1(n1)−d1(n1))].

Finally, the third term of (4) consists of the mean prod-

uct of the two error components. Owing to the fact that both

components are zero mean and because of the nonzero shift

between tv(ñ) and tv(n), this term is neglected in the se-

quel. Note that, for similar reasons, the components Et0,t1

and Ed0,d1
from the first and second terms are also neglected.

3. CONVEXITY PREDICTION

To estimate convexity of the virtual view distortion curve Dv ,
we calculate the second derivative D′′

v = ∂2D/∂v2 of the

1Recall that the fourth case is neglected assuming c∅(v) = 0.



model proposed in Section 2 as

D′′
v = Dt0

[6(C1 − C0)v + 2(1 + C0 − 2C1)]+

Dt1
[6(C1 − C0)v + 2(1− C0)]+

SdAd0
[6(C1 − C0)v

2 − 3(2C1 − C0 − 1)v + C1 − 2]+

SdAd1
[−6(C1 − C0)v

2 − 3(1− C1)v + 1− C1 − C0],

(6)

where Sd is the scaling factor estimated from the data that

embraces the impact of the correlation ρ and variance σ2

t on

the MSE caused by encoding depth reference images.

Considering that the sign of D′′
v from (6) determines lo-

cal convexity of the distortion curve, we estimate convexity of

the whole curve by calculating the sign of (6) at N equidis-

tant viewpoint coordinates 0 < v < 1. If the sign is posi-

tive or negative in more than N/2 coordinates, the whole dis-

tortion curve is classified as convex or concave, respectively.

Note that by exploiting only the sign of the second derivative

D′′(v), we suppress the effect of noise that is enhanced by the

double derivation operator.

The model parameters C0 and C1 are estimated from the

data at a small additional computational cost requiring one

step of view warping, whereas the encoding error parameters

Dt0 , Dt1 , Ad0
and Ad1

are calculated from the encoded ver-

sions of the texture and depth reference images (thus without

a need for view warping calculations). The practical values

for these parameters obtained in our experiments infer that

the factors associated to the texture distortions contribute to

(6) with a positive value folding the distortion curve to the

convex shape, whereas the same associated to the depth dis-

tortions contributes with a negative amount and, hence, results

in the concave shape. This phenomenon is evidenced in our

experimentations presented in Section 4.

4. EXPERIMENTAL RESULTS

We have verified our prediction model on three publicly

available data sets: Ballet, Breakdance [7] and Poznan Street

[21]. For the former two sets, left and right references are

chosen as views 2 and 3, while the latter employs views 3
and 5. Intermediate virtual views are formed through DIBR

with the MPEG View Synthesis Reference Software v3.5 [22]

at equidistant viewpoints each at 1/10 of baseline distance

between reference views resulting in 9 virtual viewpoints.

Both texture and depth reference images are compressed

with H.264/AVC JM Reference Software v17.2 [23] under

various combinations of quantization parameters (QP) from

within the range {7, 12, ...42}. All combinations of left and

right texture as well as left and right depth compression are

tested for coarse quantization, that is, for QP values of 22
and higher. For finer quantization at QP< 22, left and right

references, whether texture or depth, are assumed to be sym-

metrically compressed (same QP). In all, 680 different QP

combinations were tested for each data set. Reconstruction

error is measured in terms of the MSE between the virtual

Table 1. Classification results for each dataset. X and C repre-

sent ’convex’ and ’concave’ cases, whereas GTH and CR stand for

groundtruth and correct classification rate. The correct classification

rate is shown in the last line for each data set. Note that our pro-

posed scheme is capable of accurately distinguishing concave from

convex profiles, thus improving upon a generally assumed common

approach based on linear interpolation distortion.

Novel Ballet Breakdance Poznan

GTH X C X C X C

X 66 22 550 46 309 0

C 1 591 5 79 82 289

CR 96.6% 92.5% 87.9%

view synthesized from compressed references and the one

synthesized from original reference images.

Under the various reference image compression combina-

tions, MSE as a function of virtual viewpoint positions can

vary significantly ranging from a concave to convex shape as

illustrated in Fig. 1. To characterize the curvature of the mea-

sured distortions, we classify all MSE curves as either con-

vex or concave. Classification is based on comparison of ac-

tual MSE to the linearly interpolated values at the 9 synthesis

viewpoints. If the actual MSE is larger than the linear interpo-

lation at more than a half of the viewpoints (i.e. ≥ 5), such an

MSE curve is classified as concave, otherwise, convex. This

binary classification is used to generate the groundtruth data

for evaluation of our prediction model.

The classification used in our novel method is also binary

and based on the sign of the second derivative D′′
v from (6)

measured at 9 synthesis viewpoints. If this sign is positive

for more than half of the viewpoints (i.e., ≥ 5), the mod-

eled distortion curve is classified as convex, otherwise, con-

cave. The parameters C0 and C1 are calculated as explained

in Section 3, whereas Sd is estimated using the least-square

error linear estimator. Fig. 3 shows the groundtruth and model

classification for several examples. Note that these examples

conform with the phenomenon identified in Section 3 that en-

coding texture at higher QPs contributes to the convex distor-

tion curve, whereas the same for the depth images results in

the concave curvature.

To measure the performance of the proposed binary clas-

sification, we show in Table 1 the number of correct and incor-

rect concave and convex classification results across all 680
tested reference image compression combinations as well as

the correct classification rate for the chosen data sets. Our

model accurately captures both the concave and convex be-

havior of view synthesis distortions. The best classification

performance is attained for the Ballet data set in which a pre-

dominance of concave cases is present. The same compres-

sion range leads to a predominance of convex cases for Break-

dancers which is also well predicted at rate above 90%. The

Poznan data set provides a more equitable division among
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Fig. 3. View distortion: Observed and linearly interpolated values, together with modeled D′′
v for (a) Ballet: convex case, (b)

Breakdancers: convex case, (c) Ballet: concave case, (d) Breakdancers: concave case. Left texture, right texture, left depth and

right depth reference images are respectively compressed at specified QP values.

concave and convex cases, several of which are approximately

linear, leading to slightly lower classification results.

To the best of our knowledge, there are no prior meth-

ods for distortion shape characterization that we could use as

reference. Thus, we consider as a common baseline a linear

interpolation distortion model (e.g. [16] or [18]). Note that

our proposed prediction framework can accurately and effi-

ciently distinguish concave from convex distortion profiles,

thus improving upon the baseline approach.

5. CONCLUSION

We propose a novel binary classification method to determine

the shape of virtual view distortion curves in multi-view im-

age compression, convex or concave. We demonstrate that

our method is capable of achieving high classification accu-

racy for several data sets, while retaining reduced compu-

tational complexity. The presented preliminary results are

promising, while the envisaged future work will attempt to

further reduce the need for estimating the model parameters.
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