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ABSTRACT

Virtual view synthesis is a key component of multi-view
imaging systems that enable visual immersion environments
for emerging applications, e.g., virtual reality and 360-degree
video. Using a small collection of captured reference view-
points, this technique reconstructs any view of a remote scene
of interest navigated by a user, to enhance the perceived
immersion experience. We carry out a convexity characteri-
zation analysis of the virtual view reconstruction error that is
caused by compression of the captured multi-view content.
This error is expressed as a function of the virtual viewpoint
coordinate relative to the captured reference viewpoints. We
derive fundamental insights about the nature of this depen-
dency and formulate a prediction framework that is able to
accurately predict the specific dependency shape, convex or
concave, for given reference views, multi-view content and
compression settings. We are able to integrate our analysis
into a proof-of-concept coding framework and demonstrate
considerable benefits over a baseline approach.

Index Terms— Multi-view Imaging, Virtual View Syn-
thesis, Depth Image Based Reconstruction

1. INTRODUCTION

We are entering an era of transformational changes in digital
content consumption and experience, spurred by advances in
imaging and cyber-physical/human systems. Emerging tech-
nologies such as virtual/augmented reality [1], 360-degree
video [2], plenoptic cameras [3], and multi-view imaging [4]
are enabling the design of novel applications that immerse
us into volumetric visual representations that we can actively
explore, navigate, and interact with. Thus, the (flat/2D and
passive/remote) digital media experience, as we know it (for
some time now), will never be the same. Simultaneously,
these transformative changes are driving innovation across
our society, by helping introduce diverse applications with
impact on education and training, health-care, telecommut-
ing, etc. Many further advances are expected on the road to
immersive communication [5].
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Emerging applications for reconstructing remote environ-
ments for volumetric visual immersion such as virtual reality
and 360-degree video rely on multi-view imaging and virtual
view synthesis [6] to enable such experiences. In particular,
using a small collection of captured viewpoints, virtual view
synthesis reconstructs any viewpoint of a remote scene of in-
terest navigated by a user, to enhance his sensation of remote
immersion. Itis critical to have an understanding of the recon-
struction error (or fidelity) of viewpoints synthesized thereby,
to assess the quality of experience delivered to the user. Such
knowledge can enable development of efficient resource allo-
cation strategies. Bit allocation among captured viewpoints
may, for instance, be used to guarantee a minimal quality of
service or to optimize a global quality metric among multiple
users. The problem is challenging due to the complex inter-
dependencies that arise in this context between the fidelity of
the captured data and the relative position of the virtual views
in the aggregate view space navigated by the user.

View synthesis reconstruction error within multi-view
plus depth coding systems has been reported [6] as a concave
curve in which the mean-square error (MSE) as a function of
virtual viewpoint position reaches a maximum at the virtual
viewpoint farthest from the reference captured viewpoints
used in its synthesis. Nevertheless, coding conditions im-
posed upon reference images can significantly alter MSE
behavior, to the point where the expected concave shape
becomes convex as shown in Fig. 1.

Understanding and modeling such synthesized view dis-
tortion is essential to numerous multi-view video compres-
sion and streaming applications. For instance, [8] considers
multi-view multicast, where the captured video and depth
signals are encoded using the scalable video coding standard
H.264/SVC [9], and each client is served two reference video
and depth signals. A linear synthesis view distortion model
is borrowed from [10] and its coefficients are estimated from
data. Furthermore, in [11], joint source-channel coding for
multi-view video multi-cast has been studied, while [12]
investigates user-action driven view and rate scalable multi-
view coding. Both of these studies leverage an earlier cubic
synthesized view distortion model derived in [13]. Similarly,
a related distortion model has been pursued in [14]. Char-
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Fig. 1. MSE of virtual views at various viewpoint positions
synthesized from coded reference images 2 and 3 of Ballet
[7]. Concave curvature, when depth images are compressed
at QP:37, becomes convex as depth compression transitions to
QP:7. All texture images were compressed at QP:37 and MSE
is relative to synthesis from uncompressed reference images.

acterizing the rate-distortion trade-offs of view synthesis has
been also studied in [15]. Another linear distortion model
has been examined in [16], comprising three terms: video
coding-induced distortion, depth quantization-induced dis-
tortion, and inherent geometry distortion. Its practicality is,
however, restricted by its high complexity. The impact of
depth-map coding on virtual view synthesis is studied in [17],
but the impact of texture coding has not been integrated into
the analysis. Recently, in [18] a linear distortion model has
also been adopted to optimally allocate bit-rate in response to
viewer attention.

Linear modeling constitutes a simple, yet coarse approxi-
mation to reconstruction errors such as those of Fig. 1. More
complex cubic models, developed within aforementioned re-
lated work, have also failed to adequately capture the degree
of variation present in synthesized view distortions. Towards
this goal, we carry out an analysis of the reconstruction er-
ror of a virtual viewpoint as a function of its relative posi-
tion with respect to the reference captured viewpoints used
to synthesize it. We derive fundamental insights about the
nature of this dependency and formulate a prediction frame-
work that is able to accurately predict the specific dependency
shape, convex or concave, for given viewpoints, multi-view
content and compression settings. In bit allocation strategies
aimed at optimizing delivered quality in real time, convexity
characterization can serve to determine maximum MSE, in
the convex case, or estimate viewpoint position of such max-
imum in a computationally-efficient manner, without explicit
virtual view synthesis. In this sense, it offers improved preci-
sion and speed over prior modeling approaches. Furthermore,
once we establish the convexity mode, quick analytical char-
acterization of the distortion dependency can be established,

for more advanced bit allocation analysis, inclusive of having
diverse objective functions. On the other hand, without such
a facility, optimal bit allocation would need to explore a com-
plex discrete problem that would be computationally expen-
sive and prohibit real-time operation. We are able to integrate
our analysis into a proof-of-concept coding framework and
demonstrate considerable benefits over a baseline approach.
Our preliminary results are very promising and motivate fur-
ther investigation.

2. SYNTHESIZED VIEW DISTORTION MODEL

Denote the captured texture and depth images of the left ref-
erence view 0 as ¢y and dy. Similarly, denote the same for
the right reference view 1 as ¢; and d;. A virtual view ¢, is
obtained by warping the reference views 0 and 1 to the view-
point 0 < v < 1 using DIBR [19] techniques to generate
two projections ¢(, and ¢}. Warping ensures that the pixel n
of the virtual view t,, denoted as ¢,(n), is obtained by en-
forcing a disparity shift exploiting the information captured
in the depth images so that t(,(n) = to(ng — vdy(ng)) and
ti(n) = ti(n1 + (1 — v)di(n1)), where ng and n, are the
corresponding pixel coordinates in the left and right reference
views, respectively. However, due to various constraints in
realistic circumstances such as occlusion and rounding to the
integer pixel coordinates, these two projections are not per-
fectly identical. For that reason, the pixels in the virtual view
are blended using the following relation [20]:

(1 =Vt ) 40 i) 7
to(n th(n) =0,
0 fh(n) = ti(n) = 0

where ti(n) = 0 and ¢}(n) = 0 represent unavailability of
the respective pixel from the left or right reference.

Encoding the texture and depth reference images impacts
the quality of the virtual view obtained by (1). To estimate
the MSE of the encoded virtual view, denote the encoded ver-
sions of tq, dg, t1 and d; as to, do, t; and dl, respectively.
Furthermore, denote the encoded versions of the warped ref-
erence textures as {h(7i) = fo(no — vdo(no)) and #;(7) =
t1(n1 + (1 — v)dy(ny)). Consequently, denote the virtual
view (1) obtained using encoded components as to (n).

Now, the MSE of the virtual view can be expressed as

D, = E[(t,(7) — ty(n))?]. )

To estimate the contribution of the 4 cases in (1) to the MSE
in (2), denote the respective proportions of pixels synthesized
using each case as cg(v), ¢o(v), ¢1(v) and cy(v), where the
sum cg(v) 4 co(v) + 1 (v) + ¢y (v) = 1 is constant across the
viewpoint coordinate v. Note that co(v = 1) = ¢;(v = 0) =
0 because all pixels from the reference views are available at
the particular reference viewpoints. Assuming the reference
viewpoints are close enough so that occlusion or holes in 3D
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Fig. 2. Captured numbers of pixels that contribute to virtual
views across the viewpoint coordinate 0 < v < 1 for the 4
cases in (1): (a) Ballet (Cy = 16.34%, C; = 13.35%), (b)
Breakdancers (Cy = 5.24%, C = 4.62%).

objects do not affect significantly these numbers, we adopt
linear models for ¢y (v), ¢1(v) and we neglect ¢g(v), i.e.,

co(v) =Co- (1 —v),
c1(v) = C1 - v, 3
C@(U) 0,

where the constants Cjy and C; can be easily estimated as
Cy = co(v =0) and C; = ¢1(v = 1). Note that the number
cp(v) is also linear in v, thatis, cg(v) = 1—Co+(Co—Ch)v.
This model is verified in our experimentation for several data
sets and various encoding settings. An example is demon-
strated in Fig. 2, where the number of pixels is plotted against
the viewpoint coordinate v for two data sets. Furthermore, the
model remains accurate for a range of encoding rates with the
parameters Cy and C unchanged.

To simplify estimation of the MSE from (2), the error can

be split into 3 terms as

D, = E[(v(n) —ty(R) + tu () — t,(n))?] =
E[(to(71) — to(7))°] + E[(ts(7) — tu(n))®] +
+  2E[(fu () — to (7)) (b () — tu(n))]. )]

The first term of (4), E[(f,(7) — t,(72))?], represents the
error caused by encoding only the texture pixel intensities,
while the pixel coordinate n remains the same. Hence, the
contribution of this term to D,, comes from the three cases in
(1) that are weighted by cg(v), co(v) and ¢; (v),' respectively.
As aresult, this term consists of three components factored by
the MSE of the left and right reference texture images, Dk,
and Dy, , respectively, and by the cross-correlation of the en-
coding errors By, = E[(£(n) — to(7)) (£ (7) — #1(7))].
Note that, in the modeling, we assume that neither the pixel
coordinate error caused by encoding the reference depth im-
ages nor warping the pixels influences the encoding MSE of
the reference texture images and, thus, E[(t} () —t5(7))?] =
E[(to(n) — to(n))?] = Dy, and similarly for D, .

The second term of (4), E[(t,(7) — t,(n))?], corresponds
to the error introduced by displacement of the synthesized
pixels in the virtual view owing to the encoding error of the
reference depth images. Similarly to [14], we estimate this er-
ror by assuming the Gauss-Markov model for texture pixels,
that is, ¢(n + 1) = pt(n) + w(n), where p is the correla-
tion across neighbor pixels, w(n) the Gaussian noise with the
variance 02 = (1 — p?)o? and 0? = E[t?(n)] is the mean
energy of the texture image. It follows from this model that
the absolute difference |t(72) — t(n)]| is given as

[n—n|—1

@) —t()] = (P =Dty YD prw—m). )

m=0

Since, in natural images, the correlation 0 < p < 1 is nearly
1, we use the approximation p" ~ 1 — (1 — p)n. Hence,
applying this to (5) and accumulating the influence of the
three cases weighted by ¢g(v), co(v) and ¢;(v), the second
term of (4) is derived as the sum of three components fac-
tored by the mean-absolute error of the left and right reference
depth images, A4, and Ay, , respectively, and the error cross-
correlation Edo,d1 = E[(do(no) —dp (no)) (dl (n1 ) —dy (nl))]

Finally, the third term of (4) consists of the mean prod-
uct of the two error components. Owing to the fact that both
components are zero mean and because of the nonzero shift
between ¢,(n) and t,(n), this term is neglected in the se-
quel. Note that, for similar reasons, the components E, ;,
and Fy, q, from the first and second terms are also neglected.

3. CONVEXITY PREDICTION

To estimate convexity of the virtual view distortion curve D,,,
we calculate the second derivative D!/ = 92D /0v? of the

IRecall that the fourth case is neglected assuming cg(v) = 0.



model proposed in Section 2 as
DL/ = Dto [6(01 — Co)l) + 2(1 + Co — 201)}4—
Dt1 [6(01 — Co)’U + 2(1 — Co)}—l—
SaA4y[6(C1 — Co)v? —3(2C1 — Co — v+ Cy — 2]+
SdAdl [—6(01 — C())’U2 — 3(1 — Cl)v +1-C1 — Co},

(6)

where Sy is the scaling factor estimated from the data that
embraces the impact of the correlation p and variance o? on
the MSE caused by encoding depth reference images.

Considering that the sign of D!/ from (6) determines lo-
cal convexity of the distortion curve, we estimate convexity of
the whole curve by calculating the sign of (6) at N equidis-
tant viewpoint coordinates 0 < v < 1. If the sign is posi-
tive or negative in more than /N/2 coordinates, the whole dis-
tortion curve is classified as convex or concave, respectively.
Note that by exploiting only the sign of the second derivative
D" (v), we suppress the effect of noise that is enhanced by the
double derivation operator.

The model parameters Cy and C are estimated from the
data at a small additional computational cost requiring one
step of view warping, whereas the encoding error parameters
Dy, Dy,, Ay, and Ay, are calculated from the encoded ver-
sions of the texture and depth reference images (thus without
a need for view warping calculations). The practical values
for these parameters obtained in our experiments infer that
the factors associated to the texture distortions contribute to
(6) with a positive value folding the distortion curve to the
convex shape, whereas the same associated to the depth dis-
tortions contributes with a negative amount and, hence, results
in the concave shape. This phenomenon is evidenced in our
experimentations presented in Section 4.

4. EXPERIMENTAL RESULTS

We have verified our prediction model on three publicly
available data sets: Ballet, Breakdance [7] and Poznan Street
[21]. For the former two sets, left and right references are
chosen as views 2 and 3, while the latter employs views 3
and 5. Intermediate virtual views are formed through DIBR
with the MPEG View Synthesis Reference Software v3.5 [22]
at equidistant viewpoints each at 1/10 of baseline distance
between reference views resulting in 9 virtual viewpoints.
Both texture and depth reference images are compressed
with H.264/AVC JM Reference Software v17.2 [23] under
various combinations of quantization parameters (QP) from
within the range {7,12,...42}. All combinations of left and
right texture as well as left and right depth compression are
tested for coarse quantization, that is, for QP values of 22
and higher. For finer quantization at QP< 22, left and right
references, whether texture or depth, are assumed to be sym-
metrically compressed (same QP). In all, 680 different QP
combinations were tested for each data set. Reconstruction
error is measured in terms of the MSE between the virtual

Table 1. Classification results for each dataset. X and C repre-
sent “convex’ and ’concave’ cases, whereas GTH and CR stand for
groundtruth and correct classification rate. The correct classification
rate is shown in the last line for each data set. Note that our pro-
posed scheme is capable of accurately distinguishing concave from
convex profiles, thus improving upon a generally assumed common
approach based on linear interpolation distortion.

Novel Ballet Breakdance Poznan

GTH X C X C X C
X 66 | 22 550 46 309 0
C 1 591 5 79 82 | 289

[ CR [ 966% [ 925% [ 87.9% |

view synthesized from compressed references and the one
synthesized from original reference images.

Under the various reference image compression combina-
tions, MSE as a function of virtual viewpoint positions can
vary significantly ranging from a concave to convex shape as
illustrated in Fig. 1. To characterize the curvature of the mea-
sured distortions, we classify all MSE curves as either con-
vex or concave. Classification is based on comparison of ac-
tual MSE to the linearly interpolated values at the 9 synthesis
viewpoints. If the actual MSE is larger than the linear interpo-
lation at more than a half of the viewpoints (i.e. > 5), such an
MSE curve is classified as concave, otherwise, convex. This
binary classification is used to generate the groundtruth data
for evaluation of our prediction model.

The classification used in our novel method is also binary
and based on the sign of the second derivative D!/ from (6)
measured at 9 synthesis viewpoints. If this sign is positive
for more than half of the viewpoints (i.e., > 5), the mod-
eled distortion curve is classified as convex, otherwise, con-
cave. The parameters Cjy and C'y are calculated as explained
in Section 3, whereas Sy is estimated using the least-square
error linear estimator. Fig. 3 shows the groundtruth and model
classification for several examples. Note that these examples
conform with the phenomenon identified in Section 3 that en-
coding texture at higher QPs contributes to the convex distor-
tion curve, whereas the same for the depth images results in
the concave curvature.

To measure the performance of the proposed binary clas-
sification, we show in Table 1 the number of correct and incor-
rect concave and convex classification results across all 680
tested reference image compression combinations as well as
the correct classification rate for the chosen data sets. Our
model accurately captures both the concave and convex be-
havior of view synthesis distortions. The best classification
performance is attained for the Ballet data set in which a pre-
dominance of concave cases is present. The same compres-
sion range leads to a predominance of convex cases for Break-
dancers which is also well predicted at rate above 90%. The
Poznan data set provides a more equitable division among
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Fig. 3. View distortion: Observed and linearly interpolated values, together with modeled D! for (a) Ballet: convex case, (b)
Breakdancers: convex case, (c) Ballet: concave case, (d) Breakdancers: concave case. Left texture, right texture, left depth and
right depth reference images are respectively compressed at specified QP values.

concave and convex cases, several of which are approximately
linear, leading to slightly lower classification results.

To the best of our knowledge, there are no prior meth-
ods for distortion shape characterization that we could use as
reference. Thus, we consider as a common baseline a linear
interpolation distortion model (e.g. [16] or [18]). Note that
our proposed prediction framework can accurately and effi-
ciently distinguish concave from convex distortion profiles,
thus improving upon the baseline approach.

5. CONCLUSION

We propose a novel binary classification method to determine
the shape of virtual view distortion curves in multi-view im-
age compression, convex or concave. We demonstrate that
our method is capable of achieving high classification accu-
racy for several data sets, while retaining reduced compu-
tational complexity. The presented preliminary results are
promising, while the envisaged future work will attempt to

further reduce the need for estimating the model parameters.
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