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ABSTRACT

Neural networks are now widely used in image compression.
Network architecture and hyperparameter choices impact
both compression performance and complexity, but (as we
show) there are many examples where higher complexity
does not entail better compression. Thus, it is desirable to
perform rate-complexity optimization over the space of hy-
perparameters. In the context of neural-based lossless image
compression, we propose an algorithm that traces hyperpa-
rameter choices of points on or near the lower convex hull of
the cloud of rate-complexity points produced by all combina-
tions of hyperparameters, without having to know in advance
the rate-complexity performance of each combination. This
reduces the training/evaluation load of the rate-complexity
optimization by over 50% in our experiments, for each of
three measures of complexity: multiply/add operations per
pixel, Joules per pixel, and encoded network size.

Index Terms— Lower convex hull, neural networks, data
compression

1. INTRODUCTION

The use of neural networks (NNs) for both lossless and lossy
image compression has become common. In order to design
a network for such purpose, one must choose an architecture
and decide on a potentially large number of hyperparameters,
such as the number layers, the numbers of channels or filters
in each layer, the dimension and stride of each filter, and so
forth. The choice of hyperparameters affects not only the per-
formance of the NN for its intended purpose, but also its com-
plexity. In this paper, we address the problem of optimizing
over a combinatorially large set of possible NN hyperparam-
eters to find the desired bitrate-complexity tradeoff in lossless
image compression. A subsequent paper will address a simi-
lar problem in lossy image compression.

For lossless compression, a NN is typically used as
a probability model, often called a context model or en-
tropy model, to drive an arithmetic coder for entropy coding.
For example, if y is a bit that needs to be encoded in con-
text x, the NN can approximate the conditional probability
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Fig. 1. Illustration of our algorithm, which aims to trace
the lower convex hull of a cloud of rate-complexity operat-
ing points without knowing all of their positions.

p = P(y = 1]x) by network output ¢ = fy(x), where the
network parameters @ are trained on a large sequence of con-
texts {xy } and the corresponding sequence of binary symbols
{yx} to minimize the cross entropy loss

R=—>(yklogs(fo(xx)) + (1 — yx) logs(1 — fo(xx)))-
K
(1

This is equivalent to minimizing the number of bits used to
encode the training sequence {y;} given {x;} by an arith-
metic coder driven by the NN and is also equivalent to min-
imizing the KL divergence between conditional distributions
p and ¢ [1]. In principle, the bitrate can be as low as the con-
ditional entropy H (Y'|X), if the NN is sufficiently accurate.
Figure 1 illustrates the tradeoff between bitrate and com-
plexity. Each point in the Rate-Complexity plane represents
the average bitrate and complexity (in some measure, dis-
cussed later) of the NN with a particular choice of hyperpa-
rameters, trained on a sufficiently large training set. While it
seems reasonable to assume that more complex NNs should
be able to achieve better performance, as illustrated here (and
verified in our experimental results), this is not always the
case. In fact, for most choices of hyperparameters, there ex-
ist other choices of hyperparameters whose networks have
both lower rate and lower complexity. Only hyperparame-



ters whose networks have rate-complexity performance lying
on the lower convex hull (LCH) of all such points may be
considered optimal. Indeed any point not on the LCH is dom-
inated by at least one other achievable point' in both rate and
complexity. Thus our goal is to find networks whose rate-
complexity performance are on or close to the LCH, without
having to train and evaluate the rate-complexity performance
of networks with every possible hyperparameter choice. Once
we find a set of networks on or near the LCH, we can choose
among them to find the network with the desired tradeoff be-
tween bitrate and complexity, for example the network with
the lowest bitrate subject to a complexity constraint.

The primary contribution of this paper is a greedy algo-
rithm for tracing the LCH while evaluating only a small frac-
tion of the total number of possible hyperparameter choices.
We are motivated by previous works, such as [2, 3, 4], which
trace the exact LCH in tree-structured domains where the per-
formance criteria have certain properties. Since our domain
of neural network hyperparameter choices does not readily
admit these properties for rate and complexity measures, we
do not trace the exact LCH, but rather use a greedy algorithm,
which we call the Greedy LCH (GLCH) algorithm, to trace
it approximately. However, we provide bounds on the com-
plexity of our algorithm and demonstrate through experimen-
tal results that it is able to find networks with performance
on or near the LCH while evaluating only a small number of
networks.

There is a couple of recent works that tackle the problem
of jointly optimizing rate, complexity, and distortion in neu-
ral compression [5, 6]. Both aim at controlling complexity
through specific network hyperparameters. Works on neu-
ral network compression are also closely related, for exam-
ple [7]-[8]. Finally, energy constrained data compression has
previously been studied [9]-[10].

2. THE GLCH ALGORITHM

In this section we present the GLCH algorithm, but phrase
it more generally in terms of the NN’s /oss rather than its
rate. The reason for this is that in a subsequent paper, the
same algorithm will be applied to rate-distortion-complexity
optimization, for which the loss will be a rate-distortion La-
grangian rather than the rate.

Leth = (hy,..., hk) denote a vector of K hyperparame-

ters, with hyperparameter hy, taking values in v (1), . .., vk (Tk),

or without loss of generality, in 1,...,7);. The number of
possible hyperparameter vectors is N = Hle T}, which
grows exponentially in the number of hyperparameters K.
Our goal is to find hyperparameter vectors h that are “good”
(e.g., on or near the lower convex hull in the loss-complexity

'A rate-complexity point P = (C, R) is achievable if there exist two
choices of hyperparameters having rate-complexity points P; and P», and
o € [0, 1], such that P is the convex combination P = aoP; + (1 — a) P.

Algorithm 1 GLCH Algorithm

Input: the graph G of all possible hyperparameter vectors
1: Set the open and closed sets to the empty set: O < 0, C <+ 0
2: Train/evaluate the minimal node h; and add to the open set O
3: repeat

4: Select one node from the open set: h < select(O,C)

5

6

Move the node to the closed set: C +— CU{h}, O < O\{h}
Train/evaluate all children (i.e., out-neighbors) of the parent
node h and add to O, if they are not already in O
7: until h is the maximal node h n, or satisfies an early termination
condition
Output: the set O U C of visited nodes

plane) while evaluating (i.e., training) networks for only a
small fraction of the total number of possible networks N.

Towards that end, we let G = (V, £) be a graph with ver-
tex set VV of NV vertices, or nodes, identified with the collection
of all possible hyperparameter vectors hy, ..., hy, and edge
set £ of directed edges, or links, from a node h to a node h’
whenever h’ agrees with h in every coordinate except one,
say the kth coordinate, and in that coordinate, h; = h; + 1.
That is, we obtain h’ from h by increasing the kth coordi-
nate by 1. Thus the graph G corresponds to a K -dimensional
rectangular grid of 77 X --- X Tk nodes with links to their
immediate next neighbors along each axis.

It is easy to see that the graph G has the following proper-
ties: (1) the graph is directed and acyclic; (2) the out-degree of
each node is at most K; (3) there is a unique “minimal” node
with in-degree 0, namely h; = (1,1,...,1), which can be
considered the root of the graph; (4) there is a unique “max-
imal” node with out-degree 0, namely hy = (T1,...,Tk);
(5) to any node, there exists a path from the root; (6) all paths
from the root to a node have the same length, which can be
considered the depth of the node; (7) the longest path in the
graph through the graph starts at the minimal node and ends at
the maximal node; (8) the length of the longest path (i.e., the
diameter) of the graph is d = Zle T}, which is the depth of
the maximal node.

We will visit (i.e., train/evaluate) only a subset of nodes
in the graph with the GLCH Algorithm shown in Alg. 1. At
every step during execution of the algorithm, the set of nodes
V is partitioned into three sets: a set of open nodes O, a set
of closed nodes C, and a set of unvisited nodes. Initially, all
nodes are unvisited. Whenever a node is added to the open
set, it is trained/evaluated. Some nodes are eventually moved
from the open set into the closed set and are not considered
further. The union of nodes in the open and closed sets are
the set of nodes that have been visited (trained/evaluated).

The select function determines variants of the GLCH al-
gorithm. In particular, if the select function is constrained
to choose a node h from O only if it is among the deepest
open nodes @' C O, whose path from the root is longest,
then the GLCH Algorithm will keep extending the longest
path and thus will terminate in at most d steps (the diameter



Algorithm 2 Unconstrained select Function

Algorithm 3 Constrained select Function

Input: O,C
1: Find node h* € O with least complexity Ch+ s.t. (Ch=, Ln*)
is on LCH of {(Ch, Ln) : h € O U C} if exists, else with most
complexity on LCH of {(Ch, Ln) : h € O}
Output: h”

of the graph), having visited at most dK nodes. Since dK
grow quadratically in K, whereas N grows exponentially in
K, generally dK < N, so there will be a large computational
savings in this constrained case. If the select function is not
thus constrained, then there may be no upper bound on the
computation of the GLCH Algorithm short of N. In either
case the algorithm is guaranteed to terminate correctly in at
most N steps, and typically in far fewer. We will examine
both constrained and unconstrained select functions.

The properties of the graph and the bound (if any) on
the number of steps and nodes visited by the algorithm, as
discussed above, do not depend in any way on the loss-
complexity performances of the networks associated with the
hyperparameters. However, the select function, and possibly
the early termination condition, typically depend on these
loss-complexity performances.

Let Ly, and C}, be the loss and complexity of the neural
network associated with the node with hyperparameter vec-
tor h. After the GLCH Algorithm returns the set O U C of
trained/evaluated nodes to the user, typically the user com-
putes the lower convex hull of the set {(Ch,, Ly) : h € OUC}
in the loss-complexity plane. From this lower convex hull, the
user may select appropriate high-performance networks, such
as ones meeting a desired loss or complexity constraint. The
hope is that these networks are on or near the lower convex
hull of the set {(Ch, Ln) : h € V}.

Because we are interested in finding networks on or near
the LCH in the loss-complexity plane, our unconstrained
(resp. constrained) select function chooses the node h among
the nodes in the open set O (resp. subset O’) that 1) is on the
LCH of nodes in O U C, and 2) has the least complexity Cy,
among such nodes on the LCH, as shown in Algs. 2-3. In the
event there is no h in O (resp. Q') with loss-complexity per-
formance on the specified LCH, then the function falls back
to choosing among nodes in O (resp. O') with performance
on the LCH of O (resp. O’), which are guaranteed to exist.

The cost of computing the lower convex hull of O or O’
is trivial in relation to the cost of visiting a node, since visit-
ing a node entails evaluating the loss-complexity performance
(Ch, Ln) of the node h, which in turn entails training the net-
work with hyperparameter vector h. Thus we ignore the cost
of computing the lower convex hull. Note that the algorithm
for computing the lower convex hull is a simple modification
to the planar convex hull algorithms in [11].

Note that since the Constrained select Function always
chooses to extend the longest path, when used by the GLCH

Input: O,C
1: Let O C O be the subset of O whose distance from the root
(i.e., depth) is largest
2: Find node h* € O’ with least complexity Ch= s.t. (Chx, Ln=)
ison LCH of {(Ch, Ln) : h € O U C} if exists, else with most
complexity on LCH of {(Cy, L/) : h' € O’}
Output: h*

Algorithm, the algorithm will visit a set of nodes correspond-
ing to a maximally unbalanced tree, as illustrated in Fig. 1. In
the figure, the leaves of the tree represent nodes in the open
set O, while the interior nodes in the tree represent nodes in
the closed set C. All other nodes are unvisited. Importantly,
the subset of open nodes O’ C O with the longest path to the
root all have the same parent.

Our experiments will show that the GLCH Algorithm
with the Constrained select Function usually visits nodes
close to the lower convex hull. On the other hand, the CLGH
Algorithm with the Unconstrained select Function can some-
times find points even closer to the lower convex hull, with
not much additional computation, even though the computa-
tion is no longer polynomially bounded.

3. EXPERIMENTAL RESULTS

We demonstrate the GLCH algorithm on the problem of de-
signing neural networks for losslessly compressing binary im-
ages of documents pages. Our training set comprises ten
1024 x T68-pixel binary images scanned from pages of a
scientific journal, and our evaluation (test) set likewise com-
prises ten images from other pages of the same journal.

As the context model for the arithmetic coding, we con-
sider a simple multi-layer perceptron (MLP) with two hidden
layers, each with either 10, 20, 40, 80, 160, 320, or 640 hid-
den units. Thus there are K = 2 hyperparameters hj, each
taking one of T}, = 7 values. The total number of hyperpa-
rameter vectors is N = 49. For every pixel, the MLP is used
to estimate the probability of the next pixel using a context of
32 closest causal pixels (i.e., pixels that have already been en-
coded). Each network is trained to minimize the binary cross
entropy loss (1) using stochastic gradient descent over 100
epochs with a learning rate of 0.0001 and a batch size of 1024
pixels. The models are trained on an NVidia GTX 1080Ti
GPU.

As performance measures, bitrate is measured in bits per
pixel, while complexity is measured in one of three ways: (1)
multiply/add operations per pixel, (2) joules per pixel, and
(3) model bits. Multiply/add operations per pixel are com-
puted as the number of model parameters, since in an MLP
each parameter is used once per pixel. Joules are estimated by
measuring watts every second using the Nvidia-smi Toolkit®
then adding up all values. Since the energy measurements are
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Fig. 2. Rate-Complexity plots. Bitrate is in bits per pixel and complexity is in multiply/add operations per pixel (top row),
wpJoules per pixel (middle row), and encoded model bits (bottom row). Execution and final state of the GLCH algorithm
are shown for the constrained (left column) and unconstrained (right column) selection function. Dots are rate-complexity
performance of hyperparameters/nodes. At termination, blue nodes are never visited, red nodes have been visited (moved to the
open set @) but are never selected, green and yellow nodes have been visited and selected (moved to the closed set C). Arrows
show parent-child relationships from green or yellow parents to red, green, or yellow children, and take the child color. A green
arrow and child indicate that the child is selected in the step immediately following its parent’s selection, while yellow indicates

a gap between the parent’s and child’s selection.
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very noisy, we repeat the measurements over the test set 200
times. Our results are averages over these many repetitions.
Joules per pixel are obtained by dividing by the total num-
ber of pixels in the test set. Model bits refers to the number
of bits needed to represent the model, e.g., for transmission
along with the compressed data in a universal coding scenario
[12, 13]. The number of models bits equals the number of net-
work parameters times 8, 16, or 32, depending on the quanti-
zation level. Thus, when we used model bits as a measure of
complexity, we have a third hyperparameter h3 taking one of
T3 = 3 values, to indicate the quantization level, for a total of
N = T1T5T5 = 147 possible hyperparameter vectors. We do
not retrain the networks for the different quantization levels.

Figure 2 shows a 3 x 2 grid of rate-complexity plots for
all experiments, with the three rows of the grid correspond-
ing to the three complexity measures, and the two columns
corresponding to the GLCH algorithm using Constrained and
Unconstrained select Functions, respectively. In each plot,
each dot represents the rate-complexity point for one of the
N possible hyperparameter vector choices. Colors of the dots
and arrows are explained in the caption of the figure.

It can be observed that for all three complexity measures,
the GLCH algorithm with the Constrained select Function
finds nearly all points on the lower convex hull, while visiting
(i.e., training/evaluating) only a fraction of the IV possible hy-
perparameter choices. Indeed, the GLCH algorithm with the
Constrained select Function requires training/evaluating only
22 networks for the MA/pixel measure, only 24 networks for
the energy measure, and only 23 networks for the model bits
measure. The GLCH algorithm with the Unconstrained select
Function finds the few points on the lower convex hull that
are missed by the Constrained select Function, while having
to train/evaluate only a few additional networks.

Though we do not show the results here, similar results
hold for other natural measures of complexity, such as run-
time, Watts, number of parameters, floating operations per
pixel, etc.

4. CONCLUSIONS

We have pointed out that different hyperparameter choices
lead to neural-based coders with very different complexi-
ties and compression performances. Careless picking of one
choice may lead to very sub-optimal coders. Exploring all
possible hyperparameter choices may, on the other hand, be
very time consuming, as it requires iterative training and
evaluation on large datasets for every possible choice. We
proposed an efficient algorithm to find the approximate lower
convex hull of the cloud of all rate-complexity points of a
given neural-based image coder, without exploring all pos-
siblities. We successfully tested our algorithms using three
complexity measures, for which our algorithm proved to be
quite useful.

While the present paper focused on lossless image coding,

our algorithm is general enough to apply to other loss func-
tions beside bitrate. Another paper in which we deal with rate-
distortion-complexity optimization of lossy image coders will
be forthcoming. Moreover, even though our work concerns
image compression, the GLCH algorithm is applicable to any
neural network where there is a complexity-benefit tradeoff.
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