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ABSTRACT

Recently finalized, the MPEG Video-based Point Cloud Com-
pression (V-PCC) standard leverages existing video codecs to
compress point clouds. This approach relies on existing video
coding hardware accelerators to enable its fast adoption. How-
ever, the processing steps to project 3D point clouds into 2D
frames still have a considerable complexity. Thus, we propose
two modifications to TMC2, V-PCC’s test model, considering
the memory access pattern: one reducing unnecessary mem-
ory allocation and the other increasing data locality through
a set of pre-processing steps. Our approach achieved up to
46.31% encoding self-time reduction without changing the
resulting bitstream. This paper also provides an analysis of our
implementation that may help future V-PCC codecs achieve
real-time encoding.

Index Terms— Point Cloud Compression, V-PCC, 3DG,
Standard, Complexity reduction, Segmentation Refinement.

1. INTRODUCTION

Point Clouds (PCs) enable us to represent virtual worlds as
we get closer to mainstream immersive applications. Given
the enormous amount of data involved in representing PCs, a
group from Moving Picture Experts Group (MPEG) known
as 3 Dimensional Graphics Team (3DG) has been developing
standards for efficient PCs representation [1]. 3DG defined
three PC categories [2] in its Call for Proposals (CfP) for Point
Cloud Compression (PCC) [3]: category 1 includes static
objects and scenes; category 2 includes dynamic objects; and
category 3 includes dynamic acquisition, such as the ones
captured from Lidar devices [4].

The Test Model for Category 2 (TMC2) software leverages
existing video coding technologies, such as the High Efficiency
Video Coding (HEVC) [5]. For such a characteristic, the
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standard for compression of category 2 PCs was named Video-
based Point Cloud Compression (V-PCC) [4]. V-PCC works
by projecting the PCs 3D information into 2D video frames of
three types: geometry, texture, and occupancy maps. Although
video codec agnostic, TMC2 adopts the HEVC Test Model
(HM) [6] as the default codec. The known huge complexity
of HM [7] contributes directly to the complexity of TMC2 [8].
Nonetheless, the steps apart from the video codec must be
tailored for speed, as V-PCC may take advantage of existing
embedded video codecs, i.e., real-time hardware accelerators.

In this aspect, given the large number of points in a PC,
one cannot disregard the memory wall problem [9]–[11], i.e.,
the difference between processor and memory access speeds
imposes penalties to programs that disregard such a gap. Thus,
this work’s main contribution is the proposal and assessment of
a memory-friendly version of the refine segmentation method
used in TMC2, which, before our proposal, was one of the
most time-consuming TMC2 methods. Our contribution may
help drive further improvements toward real-time encoding of
PCs using V-PCC by avoiding memory bottlenecks.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the refine segmentation method along with
a summary of MPEG contributions targeting its complexity
reduction. Section 3 presents our proposed modifications in
the refine segmentation step to speed up the encoder without
coding efficiency losses. Section 4 shows the adopted speed-
up test method, while the obtained results are discussed in
Section 5. Finally, Section 6 brings our conclusions.

2. SEGMENTATION REFINEMENT

V-PCC needs to project the PCs 3D information into 2D video
frames to leverage existing video technologies. The 2D frames
are composed of patches projected from the PC into planes
surrounding it. Optimal patch segmentation is an NP-hard
problem, performed in TMC2 using a heuristic approach [1],
illustrated in Figure 1.

Initially, a normal is estimated for every point. The initial
segmentation uses the computed normals to associate each
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Fig. 1. Point cloud to patches flow in TMC2. Adapted
from [12].
point to an oriented plane. However, such a step has limited
clusterization capability. Therefore, a refinement step (high-
lighted in Figure 1) is performed to improve this segmentation,
considering the points’ nearest neighbors along with their es-
timated normals in a combined score. After the refinement,
points associated with the same planes are grouped through a
connected components algorithm [13], forming the patches.

The refine segmentation step seems to be one of the
most time-consuming ones of TMC2 from its inception as
refineSegmentation method. Given its complexity,
refineSegmentation was addressed by a few complex-
ity reduction contributions. Samsung proposed an alternative
implementation that is a bit-exact match with the anchor im-
plementation [14]. Such a proposal brought the total encoding
time down by about 60%.

However, the refineSegmentation method still had
a high complexity. Thus, Samsung proposed a grid-based
version, called refineSegmentationGridBased [15],
[16]. The key idea is to group neighboring points into a grid,
reducing the total number of score computations.

Create grid find nearest
neighbors (NNs) it=0

it<numIters
recompute each

point’s score given
its associated plane

update point scores
considering NNs

++it
cluster each point
considering the
highest scores

update final scores
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Fig. 2. refineSegmentationGridBased simplified
flow chart. Adapted from [12].

A hash map is adopted to represent the grid, facilitating
the search for points in this grid. Four parameters control the
refineSegmentationGridBased method [15]:

1. numIters: number of refinement iterations (default=10).

2. voxDim: voxel (grid) dimension (default=4).

3. nnSearchRadius: nearest-neighbor searching radius of
kd tree (default=192).

4. maxNNCount: maximum number of nearest-neighbors
for each point (default=1024).

Further complexity analysis of TMC2 showed that, de-
spite being faster than the original refine segmentation method,
the grid-based version continued to dominate time complex-
ity [17], ranging from 77% to 91% of the computing cycles.

A tweak in that method’s implementation, avoiding redundant
hash map accesses, was able to bring TMC2 self-time down by
a further 41% [18]. Such a tweak was integrated into TMC2
v9 [19].

2.1. Complexity assessment

To assess refineSegmentationGridBased complex-
ity in the current TMC2 encoder (v11), we compared its exe-
cution time (measured with std::chronos) with the total
TMC2 self-time. This experiment was executed on AMD
Ryzen 9 3900X @ 4GHz processor, with TMC2 v11 compiled
with GCC v9.3.0 in release mode. Also, we configured CMake
scripts to use HM as an external software instead of linking its
libraries in a stand-alone TMC2 binary. Such a configuration
allows for TMC2 to report HM time as child process time.
Thus, the self-time does not include HM’s execution, which
is more realistic considering the future adoption of embedded
codecs.

We encoded 32 frames of Loot, RedAndBlack, Soldier,
and Longdress PCs [20], with one and six threads, random
access configuration (C2RA), and rate point R5 [21]. Figure 3
shows the obtained results.
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Fig. 3. refineSegmentationGridBased time shares
in TMC2 v11 with one and six threads.

Even considering the single-thread executions, the share
of grid-based segmentation refinement is over 50% for three
out of the four tested PCs. The lower share for Longdress PC
is due to the method’s configuration in that case. All tested
PCs use the default configuration for nnSearchRadius and
maxNNCount. However, Loot, RedAndBlack, and Soldier
use voxDim=2 (smaller than the default), and Longdress uses
a larger number of iterations (50). A larger voxel (voxDim)
means fewer score computations due to a smaller number of
grid positions. Therefore, despite executing more iterations in
the case of Longdress, the smaller number of voxels results in
the smaller time-share for refine segmentation method in such
a PC observed in Figure 3.

We used perf tools to help identify the reasons for the still
high complexity of the refine segmentation method. Such tools
can record stack frames by sampling, which can be further
used to generate the so-called “flame graphs” [22]. For such a



case, TMC2 was compiled in debug mode. Thus, the obtained
time-shares may be slightly different than in release mode.

A large time-share within refine segmentation step is due
to the computeAdjacencyInfoInRadius method. In
such a method, about 2/3 of the time is spent by the nanoflann
library [23]. The remaining 1/3 is due to the results vector’s
resizing. A similar share is due to the access of elements from
the hash map, i.e., the grid. Despite the search for elements in
a hash map having O(1) expected time complexity [24], the
access time starts to increase when such a map is too large.
This happens because memory access times may impose huge
penalties when the memory hierarchy (cache) cannot help due
to poor data locality. Moreover, the hash map access operator’s
time-share is much larger when TMC2 is compiled in release
mode, as it became evident after obtaining our results.

3. MODIFICATIONS IN TMC2

To tackle the observed sources of complexity, we propose
two modifications in TMC2. The first, minor one, deals with
unnecessary memory allocations. The second one adapts the
grid-based refine segmentation method to increase locality.

3.1. Memory allocation

PCCKdTree::searchRadius needs to copy the results
from the nanoflann library [23]. However, the resulting
vector is always resized to the maximum allowed number
of results num results, even when the number of re-
sults from nanoflann (let us call it ret size) is smaller
than the maximum. Therefore, we propose to use mini-
mum(num results, ret size) to resize the resulting
vector to the optimal size. This small modification keeps
functionality while dramatically reduces the total amount of
allocated bytes.

3.2. Cache-friendly segmentation refinement

As pointed out in Section 2.1, the access to the grid represented
as a hash map (std::unordered map) is responsible for
a large share of refineSegmentationGridBased com-
plexity. The loop depicted in Figure 2 contains the bulk of
those accesses that concentrate mostly on the highlighted step.

We propose to add a set of pre-processing steps before
such a loop to increase the data locality in memory intensive
parts of the code, aiming to reduce execution time. The key
that allows our proposal is that while each point’s orientation
may change, their positions in the grid remain constant during
execution. The pre-processing consists mainly of:

1. Using two hash maps instead of one, reducing the size of a
single instance of the hash map (increasing locality):

(a) One to map grid center to point indices;

(b) Another to map the grid’s center to the vector of
scores;

2. Pre-computing the weight for each grid voxel, considering
the number of adjacent points and a pre-defined lambda (as
used in the original method [12]);

3. Sorting the adjacent points to reduce the address distance
between consecutive accesses;

4. Zipping the contents from the two hash maps using a vector
of pairs to enable the scores’ sequential update.

4. EVALUATION METHOD

We implemented the proposed modifications in TMC2 v11 for
obtained the results presented in this paper and as a contri-
bution to MPEG committee [25]. Our contribution has been
accepted and integrated into TMC2 v12 [26] and thus, for
more details on our proposal, one can check out the complete
code. The compilation process is the same presented in Sec-
tion 2.1, considering debug and release mode. We compiled
TMC2 in debug mode and used Valgrind’s xtree-memory tool
to verify the memory allocation modification impact. On the
other hand, to evaluate speed-up, we encoded 32 frames of
Loot, RedAndBlack, Soldier, and Longdress PCs using C2AI
(all intra) and rate point R5 [21] in TMC2 release mode. We
compared the MD5 checksums of the encoded PCs reported by
both original and modified TMC2 to ensure they match. Equal
MD5 checksums guarantee that our proposal does not change
coding efficiency. As our implementation aims to leverage data
locality, we experimented on three platforms with different
topologies:

• AMD Ryzen™ 9 3900X@4GHz, with 64MB, 6MB, and
786KB total cache sizes for level 3, level 2, and level 1,
respectively;

• Intel© Core™ i7 8565U@3.1GHz with 8MB, 1MB, and
256KB total cache sizes;

• Intel© Core™ i5 6200U@3.1GHz with 3MB, 512KB, and
128KB total cache sizes.

The first one is a desktop processor, whereas the other two
are mobile ones. Despite the different total amount of cache in
each processor, there are some similarities in their topology,
shown in Figure 4. Level 1 has equal capacity on all platforms.
The AMD processor has twice the level 2 capacity than the
other two, which are equal among them. All processors have
unique level 3 sizes shared by groups of 2, 3, or 4 cores.

We obtained the execution time of each run from TMC2
reports and computed self-time reduction (%) as:

self-time reduction =

(
1− modified self-time

original self-time

)
× 100%

(1)
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Fig. 4. Topology of (a) AMD Ryzen™ 9 3900X, (b) Intel©

Core™ i7 8565U, and (c) Intel© Core™ i5 6200U, as reporded
by lstopo tool from hwloc [27].

5. RESULTS

The main benefit of the memory allocation modification is
a much smaller number of total bytes allocated during the
execution of TMC2. Before the modification, a total of 3.19
TiB of memory was allocated. After the modification, only
248.42 GiB was still being allocated (reduction of 92.39%).
Notice that these values are not peak memory, but total bytes
allocated throughout the execution.

Figure 5 shows the obtained speed-up results, consider-
ing both modifications. The memory allocation modification
played only a small role in these results, being a fraction of
the cache-related modification benefits. Considering the PCs,
Longdress has smaller benefits. This is expected because the
total share of refine segmentation method was already small
for this PC compared to the other ones (Figure 3). The speed-
up results considering the remaining PCs are similar among
them.

Also as expected, the smaller benefits are observed for the
processor with the larger caches. Moreover, level 2 caches
seems to have played a major role since the difference between
Ryzen and i7 is quite large (there is a difference starting in L2
cache size) and the difference from i7 to i5 is smaller (there is
a difference only in L3 cache size).

The reason for such considerable gains in coding speed is

 0

 10

 20

 30

 40

 50

Loot RedAndBlack Soldier Longdress

S
el

f-
ti

m
e 

re
du

ct
io

n 
(%

)

AMD RyzenTM 9 Intel© CoreTM i7 Intel© CoreTM i5

28% 29% 29%

23%

40% 39%
42%

26%

44% 43%
46%

28%

Fig. 5. Self-time reduction results.
that our implementation successfully ensured better cache lo-
cality, thus reducing miss ratio. The better locality is achieved
by shortening the distances between consecutive memory ac-
cesses. The distribution of memory distances between con-
secutive assesses during the most memory intensive part of
the first iteration from refine segmentation method is shown in
Figure 6. Thus, it is clear that after our modification, there is a
larger probability that the next required data is already at the
nearer cache level.
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6. CONCLUSION

This paper presented and evaluated a new memory-friendly ver-
sion of the grid-based refine segmentation method for V-PCC.
Our proposal speeds up TMC2 while keeping its coding effi-
ciency intact, i.e., the encoded PCs using our modified imple-
mentation are bit-exact matches compared to the anchor ones.
The proposed implementation has still room for improvement
but already showed promising speed-up results, with up to
46.31% encoding self-time reduction (34% on average). Such
a speed-up depends on the platform (cache size) and the param-
eters of the refineSegmentationGridBased method.
Moreover, we brought up for discussion the well known, but
sometimes forgotten, memory wall problem. This paper’s
lesson is that avoiding the memory bottlenecks is of the ut-
most importance to achieve fast and even real-time software
encoding of category 2 PCs.
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