
LOSSY POINT CLOUD GEOMETRY COMPRESSION VIA DYADIC DECOMPOSITION

Davi R. Freitas, Eduardo Peixoto, Ricardo L. de Queiroz∗ and Edil Medeiros

Universidade de Brası́lia
Brası́lia, Brasil

rabbouni.davi@image.unb.br, eduardopeixoto@ieee.org, queiroz@ieee.org and j.edil@ene.unb.br

ABSTRACT

This paper proposes a lossy intra-frame coder of the geometry
information of voxelized point clouds. Using an alternative
approach to the widespread octree representation, this method
represents the point cloud as an array of binary images. This
algorithm works recursively using a dyadic decomposition
that splits an interval of slices in two smaller intervals, de-
picting a binary tree traversal, and transmitting the occupancy
information of each interval. The sequence of bi-level images
are encoded in a lossless fashion until a fixed point in the tree,
from where the algorithm “skips” the dyadic slicing and trans-
mits all the k remaining slices as leaves of the tree, which are
then encoded in a lossy fashion. The performance assessment
shows that the proposed method outperforms state-of-the-art
intra coders of lossy geometry for medium to higher bitrates
on the public point cloud datasets tested.

Index Terms— Point clouds, lossy coding, geometry
compression, intra coder

1. INTRODUCTION

Point clouds are important data structures in the context of
virtual and augmented reality applications, as it provides a
means of representation of objects with complex geometry in
a flexible manner. A point cloud can be defined as a set of
points in the 3D space, represented by coordinates (x, y, z),
and optional attributes - generally color. Although the data
volume of a point cloud is smaller than that observed in polyg-
onal meshes [1], it is still significant and, thus, urges the de-
velopment of efficient compression algorithms. While there
are works involving the compression of non-voxelized (con-
tinuous) point clouds [2, 3, 4], the scope of this work focus
on voxelized point clouds.

A great number of codecs use the octree [5] representa-
tion as means to structure point clouds and exploit it to com-
press the data, both for intra [6] and inter frame coding [7].
Lossless compression methods achieve significant bitrate re-
ductions, but further savings can be accomplished by intro-
ducing lossy mechanisms in the compression scheme. Kam-
merl et al. [8] propose a lossy geometry approach based on
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a double buffering scheme for inter-frame coding. Mekuria
et al. [9] approaches the problem of lossy geometry compres-
sion by constructing the octree up to only a certain level of de-
tail. Oliveira et al. [10] set the octree representation as a base
layer and a graph-based transform as an enhancement layer to
achieve lossy compression. Quach et al. [11] propose a lossy
geometry method based on a convolutional auto-encoder.

We note that representing point clouds by octrees is a pop-
ular approach. However, solutions using different methods
of representation of point clouds have also been proposed.
Daribo et al. [12] model the point cloud as a 3D space curve
and compresses the geometry in a lossy fashion with arith-
metic encoding. Zhu et al. [13] propose a lossless intra-frame
geometry coding scheme by using binary tree partitioning.
Milani et al. [14] introduces a lossy intra-frame algorithm for
point cloud geometry based on a reversible cellular automata
block transform. Peixoto [15] represents a point cloud as a
sequence of silhouette images in a 3D cube and encode them
using dyadic decomposition in a lossless algorithm.

The MPEG G-PCC TMC13 v7.0 [16] is a geometry based
codec that originated from the current proposals by the MPEG
group. In addition to its lossless geometry compression ca-
pability, the TMC13 coder has two methods for compressing
lossy geometry [17]. The first is the direct geometry quanti-
zation, which will be referred in this work as TMC13 Octree.
It works by quantizing the differences between each point of
the point cloud and the minimum coordinates along its three
axis. The other is the triangle surface approximation, referred
here as TMC13 Trisoup. It is implemented by representing
each voxel as a surface that intersects each of its edges. On
the decoder side, this method constructs triangles from a set
of vertices, which are the intersections between the surface
and the voxel, and the lost voxels are estimated by extracting
refined vertices from the constructed triangles.

While the lossless algorithm proposed by Peixoto [15]
outperforms the lossless mode from TMC13, it does not fea-
ture a lossy compression technique. For this reason, we mod-
ify this previous work to propose a lossy intra-frame coder of
the point cloud geometry in an effort to achieve further bitrate
savings. Another contribution of this paper is a set of post-
processing reconstruction techniques that improve the quality
of the reconstructed images.



2. DYADIC DECOMPOSITION

Consider a voxelized point cloud of dimensions N × N × N
represented as a 3D boolean occupancy array G(x, y, z). The
central idea of the dyadic decomposition method [15] is to re-
cursively slice the 3D array G along a chosen axis of interest.
At each step, an N × N silhouette image is obtained by pro-
jecting along the chosen axis all the occupied voxels in the
region being processed. These images are then compressed
by an arithmetic coder.

The recursive nature of the algorithm works by dividing
an interval of slices in two smaller equal intervals, thus, im-
plying a binary tree traversal. Each node of the dyadic binary
tree holds the silhouette for the whole 3D region it represents.
The rationale behind this dyadic decomposition is that from
the silhouette image for an arbitrary node one can infer a great
number of unoccupied voxels: all blank pixels in the silhou-
ette image are empty because they were empty in all slices
through that axis meaning that all subtrees from that node will
present at least those same unoccupied voxels. The algorithm
takes advantage of the similarities between the current node
silhouette and its parent to mask information that can be in-
ferred at the decoder. It also uses information of neighbor
nodes to build contexts to a JBIG [18] inspired binary arith-
metic coder. The slicing process continues until each leaf of
the binary tree holds an atomic interval slice.

Experiments show that slices close to the leaves of the
dyadic binary tree are not compressed as efficiently as slices
closer to the root. Thus, as well as the dyadic decomposition
method described above, another encoding approach called
single mode encoding is also proposed in the previous work.
The algorithm adds a parameter P ∈ [1, N ] and follows with
the dyadic decomposition until the processing region com-
prise a volume of k <= P slices. From this point on, the
single mode approach “skips” the dyadic slicing and trans-
mits all the k remaining slices as leaves of the tree, using
the corresponding silhouette of this interval as a mask for the
encoding of each leaf. For the implementation in [15], both
single mode encoding and the dyadic decomposition methods
are tested and the method yielding the lowest bitrate is chosen
to compose the output bitstream.

2.1. Losing information to improve compression

In this paper we propose to introduce lossy mechanisms on
the dyadic decomposition encoder to achieve lower bitrates
without presenting significant geometry degradation. We per-
form the single mode encoding only using a fixed value of
P = 64 slices. That is, we proceed with the dyadic decom-
position with lossless encoding of the silhouettes until and in-
cluding depth log2 N−5. The algorithm then stops the dyadic
slicing of the tree and jumps to the leaf images that will then
be compressed in a lossy fashion. Fig. 1 shows an schematic
representation of the tree construction. The specific choice of
the parameter P = 64 was empirically determined and we
regard further tuning of this parameter as a future work.
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Fig. 1. Diagram showing dyadic decomposition and fixed sin-
gle mode encoding with P = 64.

In order to compress the geometry in the single mode
encoding, two lossy techniques were implemented. First, a
downsampling technique is achieved by applying the non-
adaptive, nearest neighbor interpolation method [19] to each
single slice. Second, we sought to skip a certain number of
consecutive slices, interpolating the intervening ones on the
decoder side. For the rest of this paper, this second technique
will be referred simply as step, where a step value of k means
that k − 1 successive slices were skipped. These techniques
can be combined to achieve different bitrates. Fig. 2 illustrates
the lossy techniques combinations.

When the downsampling is used, the decoder can recon-
struct the downsampled images with the nearest neighbor in-
terpolation in order to estimate the voxels in that slice. When
the step is used, a 3D linear interpolation to reconstruct the
intervening skipped slices can be used.

We propose two reconstruction techniques to improve the
quality of the reconstructed voxels without transmitting addi-
tional data. To recover some of the occupied pixels lost in the
downsampling, a morphological operation of closing [20] is
performed on the upsampled image at the decoder side. Then,
the parent silhouette YS (Fig. 2) is used as a mask to constraint
the region in which occupied voxels can be recovered. For



(a) (b) (c)

Fig. 2. Examples of application of lossy techniques in the single mode encoding: (a) downsampling; (b) step = 3; and (c)
downsampling and step = 3

Fig. 3. Operation points for sequence Man2. The values
near each point indicates its corresponding step value.
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Fig. 4. Comparison of the proposed reconstruction meth-
ods.

the step technique, a basic interpolation algorithm between
the non skipped frames (referred here as antecedent and sub-
sequent frames) is performed to find the best fit between them
- referred here as t. Once this value t is found, the interme-
diate slices are generated by translating the antecedent frame
by fractions of t. As an example, suppose the best value t = 1
between two frames. For a step value of 4, the three interme-
diate frames are generated by translating the antecedent frame
by values by 1

4 , 2
4 and 3

4 . In addition, operations of morpho-
logical closing and the use of YS as a mask are performed to
further enhance the interpolated slices.

3. EXPERIMENTAL RESULTS

In 2017, the Moving Picture Experts Group (MPEG) issued
a Call for Proposals [21], where an objective performance
assessment for compression solutions to point clouds was
outlined. This evaluation is based on rate-distortion perfor-
mance, where the rate is reported as bits per occupied voxel
(bpov) and the distortion can be measured in terms of peak
signal to noise ratio (PSNR) by two different metrics [22]:
the point-to-point error (C2C) is obtained by calculating the
Mean Squared Error (MSE) between the reconstructed points
and their nearest neighbors in the reference point cloud. The
second metric is the point-to-plane error (C2P), which is
computed by taking into account the surface planes instead
of the nearest neighbors [23].

A Matlab implementation of the proposed coder is avail-
able [24]. We ran the experiments in the publicly available
JPEG Pleno Database [25], in particular in the 8i Voxelized

Full Bodies dataset [26]. It consists of 4 sequences with 10
bit resolution: LongDress, Loot, RedAndBlack and Soldier.
3.1. Selection of the best coding parameters
The combination of different values of downsampling and
step can provide distinct levels of distortion and bit rate on
the point cloud. As a result, it is necessary to obtain a def-
inite set of parameters to provide a rate-distortion (RD) op-
timized curve. Taking that into account, 18 different com-
binations of values were tested: for downsampling, values
of 1, 1.33, 1.6, 2, 3.2 and 4 were analyzed; for step, val-
ues of 1, 2 and 4 were used. This test was performed over
ten randomly selected frames of the point cloud sequence
Man 2 [27], resulting in the values observed in Fig. 3. We
have chosen operation points that better cover the possible
bitrates. The chosen values are: (downsampling, step) =
[(1, 2) , (1.33, 2) , (2, 2) , (3.2, 2) , (3.2, 4)].

3.2. Post-processing reconstruction improvements
Post-processing techniques were presented in Section 2.1 in
an effort to improve the results obtained from simple recon-
struction for both step and downsampling methods. In order
to assess these techniques we ran a small experiment compar-
ing the simple reconstruction with the proposed one, which is
shown in Fig. 4. It can be seen in the figure that the proposed
algorithms significantly improve the reconstruction quality.

3.3. RD performance evaluation
We evaluate our solution against the TMC13 v7.0 codec to
compare the results obtained from the proposed algorithm
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Fig. 5. RD performance results for (left) LongDress and (right) Soldier: (top) C2C and (bottom) C2P metrics.

Sequence
C2C C2P

Proposed TMC 13 - Trisoup Proposed TMC 13 - Trisoup
Low High Total Low High Total Low High Total Low High Total

LongDress 2.10 2.49 2.10 4.28 0.99 3.07 1.58 -0.31 0.11 2.51 -1.27 1.48
Loot 0.34 1.81 0.88 4.47 0.81 3.37 1.67 0.42 0.57 2.78 -1.45 1.74

RedAndBlack 1.85 2.53 2.04 4.05 0.99 2.93 1.95 0.08 0.39 2.86 -0.96 1.71
Soldier 2.06 2.67 2.21 4.39 1.03 3.26 2.11 0.55 0.70 2.86 -1.09 1.84
Average 1.59 2.38 1.81 4.30 0.96 3.14 1.83 0.19 0.44 2.75 -1.19 1.60

Table 1. BD-PSNR comparisons of lossy geometry compression with state-of-the-art algorithms. All values are in dB. Results
of the MPEG G-PCC TMC13 v7.0 with direct geometry quantization method are used as the benchmark.

with state-of-the-art solutions. The RD performance for C2C
and C2P metrics averaged over the first 100 frames for the
LongDress and Soldier sequences is shown in Fig. 5.

In order to better assess the proposed method we have di-
vided the bitrate range in two ranges: a low range, up to 0.3
bpov, and a high range, from 0.3 bpov. In the figures, this is
shown as a vertical dotted line. The experimental results are
summarized in Table 1. The results were obtained by taking
the average of the BD-PSNR values [28] - using TMC13 Oc-
tree as anchor - for both C2C and C2P metrics over the first
100 frames of each sequence. The BD-PSNR over the whole
bitrate interval is also shown.

We can observe that both TMC13 Trisoup and our pro-
posal perform better in the C2C metrics than the TMC13 Oc-
tree, with our proposal presenting better results than both al-
gorithms for higher bitrates (an average of 2.4dB advantage
over TMC13 Octree and 1.4dB over TMC13 Trisoup), while
TMC13 Trisoup performs better for lower bitrates. For the
C2P metrics, both algorithms again present better results than

TMC13 Octree. However, TMC13 Trisoup performs worse
for higher bitrates (average of −1.19dB), while our solution
performs only slightly better with an average of 0.19dB.

4. CONCLUSIONS

This work presents a new approach for lossy intra compres-
sion of point cloud geometry using an alternative represen-
tation to the popular octree structure. It also proposes post-
processing techniques that improve the quality of the recon-
structed voxels. For bitrates greater than 0.3 bpov, the al-
gorithm outperforms both lossy geometry compression meth-
ods from the state-of-the-art intra coder TMC13 v7.0 in the
C2C metrics, while slightly outperforming them in the C2P
metrics. Even for lower bitrates, the proposed algorithm still
outperforms the TMC13 Octree, although the TMC13 Trisoup
performs better in this range. For future work we plan to im-
prove the proposed reconstruction algorithms, especially for
lower bitrates, as well as expand the operation points of the
codec to even lower bitrates.
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