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ABSTRACT

Motion estimation in dynamic point cloud analysis or com-
pression is a computationally intensive procedure gener-
ally involving a large search space and often complex voxel
matching functions. We present an extension and improve-
ment on prior work to speed up block-based motion estima-
tion between temporally adjacent point clouds. We introduce
local, or block-based, texture descriptors as a complement
to voxel geometry description. Descriptors are organized in
an occupancy map which may be efficiently computed and
stored. By consulting the map, a point cloud motion estimator
may significantly reduce its search space while maintaining
prediction distortion at similar quality levels. The proposed
texture-based occupancy maps provide significant speedup,
an average of 26.9% for the tested data set, with respect to
prior work.

Index Terms— Point clouds, volumetric media, 3D, mo-
tion estimation.

1. INTRODUCTION

Among the novel 3D representations for imaging systems,
point clouds (PCs) constitute a geometrically simple yet ver-
satile alternative, offering relative freedom to acquisition and
rendering procedures. They are a set of points(x, y, z) in 3D
space with associated data, such as color. In voxelized clouds,
the points assume integer coordinate values on a regular 3D
grid. Points within such a grid are called voxels and may be
occupied or not. A temporal sequence of clouds, organized in
frames, may be used to depict movement of dynamic objects
or scenes.

The large amount of data generally involved in this 3D
representation requests compression. This is, in fact, cur-
rent subject of standardization efforts [1]. Previous studies
have focused on compression of geometry [2,3] and color at-
tributes [4, 5] pertaining to static PCs while dynamic clouds
have been addressed in [6–8]. In the latter case, motion esti-
mation (ME) between PCs (a process henceforth referred to
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as PCME) plays a key role in the design of a successful pre-
dictive coder. To exploit temporal redundancy, [6] performs
PCME by matching features derived from graph-based rep-
resentations of successive clouds. Block-based partitions are
matched to those of temporally adjacent clouds in [7,8]. The
former uses an iterative closest points (ICP) algorithm to lo-
cate a correspondence while the latter proposes optimization
of a block-matching metric. PCME, nevertheless, may ac-
count for significant portions of processing time.

This work concerns the speeding up of block-based
PCME. It is an extension and improvement on prior work [9].
Therein, the use of occupancy maps containing local statistics
based on geometry, i.e., 3D moment-based shape descriptors,
was used to efficiently restrict PCME search space. Here,
occupancy maps based on local texture characteristics are
introduced to offer further PCME speedups while main-
taining provided quality. The proposed framework may be
directly applied in codecs such as [7,8] or in the development
of PCME-dependent applications which use a block-based
paradigm. Note that assessment of block-based PCME ac-
curacy or its compression efficiency is beyond the scope of
the current study. The novel texture-based occupancy maps
are used in conjunction with those of [9] and contribute to
significant performance gains while respecting constraints
imposed for their efficient computation and storage.

Block-based PCME and prior work are briefly reviewed
in Sec. 2. The proposed texture-based occupancy map is in-
troduced in Sec. 3. Experimental results and conclusions are
discussed in Secs. 4 and 5.

2. PREVIOUS WORK

A PC may be partitioned into blocks, in particular, non-
overlapping cubes of dimensionL × L × L. In block-based
PCME, for each such cube of a current (or source) frame,
a search space of sizeS × S × S is defined in a previous
(or target) frame around a co-located cube, as exemplified in
Fig. 1. Among the set ofL-dimensioned target cubes avail-
able within the search space, a best match with respect to
the source cube is determined. In a full search scenario,S3
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Fig. 1: Examples from the PC sequenceLongdress [11] shown at dif-
ferent time instants and perspectives. Motion estimation establishes
a correspondence between a source cube (in yellow) of current frame
and a target cube within a search space (in green) of previous frame.

target cubes are considered in optimization. The motion vec-
tor indicating selected target cube position relative to source
is used towards compensation, forming a prediction of the
current frames’s PC. This process presents some differences
with respect to ME in conventional 2D video. The 3D grid
is often sparsely populated, containing unoccupied voxels.
Moreover, the number of occupied voxels may vary from
frame to frame. Cube-matching criteria should thus account
for these geometry differences. Complexity levels are also
aggravated by the increase in search space dimension. Fast
matching schemes commonly used in 2D video, e.g., [10],
must operate with prior knowledge of geometry for adequate
search space subsampling.

Prior work [9] introduced an occupancy map to speedup
PCME. The map for a PC is efficiently pre-computed with
one-pass update formulas (discussed at the end of this sec-
tion). The descriptors therein are simple yet discriminative
and, as scalar values, may be succinctly stored for multiple
referencing. By consulting the map and comparing the occu-
pancy value of the given source cube to that of a candidate
target cube, the motion estimator may discard target cubes
and avoid evaluation of, generally costly, cube-matching with
candidates deemed incompatible. Speedup is measured as the
number of discarded candidates with respect to full search.
No assumptions are made on the cube-matching criterion;
thus, the framework may be generically applied.

The occupancy maps of [9] describe local geometry, or
spatial distribution of voxels within cubes, through statistical
moments. A 3D moment [12] of orderp+ q+ r is defined as

Mpqr =
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wherev(x, y, z) is the voxel density function, assuming value
1 for occupied and0 for unoccupied voxels, within a domain
of sizeL3. The occupancy mapO(x, y, z) is formed by the
3D moments of all cube partitions of dimensionL and origin
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Fig. 2: A displacement of cubeC (in x-direction) introduces voxels
lying on the frontal plane (setA, in green) and eliminates those from
the rear surface (B, in red) formingC′.

(x, y, z) in a voxel space of dimensionsN3.
3D moments have the added benefit of being computable

with one-pass update formulas [13], a particularly useful
property when constructing occupancy maps by incremen-
tally scanning through multiple overlapping partitions. Con-
sider, without loss of generality, a cube sliding along the
x-direction as illustrated in Fig. 2. Each increment inx intro-
duces a setA and discards a setB of L2 points. The statistical
moments of next cubeC ′ may be updated in terms of the of
the previous cubeC and those ofA andB. For example,
the zero-th ordered momentM000, representing cube size or
number of occupied voxels, is updated as

MC′

000
= MC

000
+MA

000
−MB

000
. (2)

3. TEXTURE-BASED OCCUPANCY MAPS

Besides geometry, we expand the framework by considering
texture as a local descriptor. Texture-based occupancy maps
are used in conjunction with geometry and, likewise, are com-
puted in the same one-pass update step described previously.
We adopt the average luma component of the occupied vox-
els within a cube as a simple yet discriminative descriptor.Let
Y (x, y, z) represent the luma intensity at point(x, y, z) and
Y C
S (x, y, z) the summation of intensities within a cubeC of

dimensionL and origin(x, y, z) such that

Y C
S (x, y, z) =

L−1∑

x=0
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v(x, y, z)Y (x, y, z). (3)

The update formula is analogous to (1), i.e.,

Y C′

S = Y C
S + Y A

S − Y B
S (4)

and the texture-based descriptor for a given cube is defined as
Ȳ C = Y C

S /MC
000

. The texture-based occupancy map is thus
OT (x, y, z) = Ȳ C .

In this work we have selected cube size as our local geom-
etry descriptor due to reported efficiency [9]. The geometry-
based occupancy map is thusOG(x, y, z) = MC

000
.

The motion estimator compares the local statistic of
the current source cubeOsrc

i (x, y, z) to those contained



in the map and restricts the search space to target cubes
presenting similar statistics, i.e., within a tolerance range de-
fined by a thresholdDi such that(1 − Di)O

src
i (x, y, z) ≤

Otgt
i (x′, y′, z′) ≤ (1 +Di)O

src
i (x, y, z), i ∈ {G,T}.

4. EXPERIMENTAL RESULTS

Our tests were conducted on a variety of publicly available PC
data sets, i.e., the upper body sequencesAndrew, David, Phil,
Ricardo, Sara [14] and full body human subjectsLongdress,
Loot, Red and Black, Soldier [11]. All have spatial resolution
of 512× 512× 512 voxels and are furnished with RGB color
attributes. For all sets, the 10th frame is chosen as the source
and the 9th as target.

Results of our geometry-and-texture (G&T) proposal
were compared to those of full search PCME and those of
prior work [9] employing geometry-only (GO) occupancy
maps, as defined in Sec. 3, in terms of prediction distor-
tion, speedup and motion vector error. In the current PCME
implementation, a cube-matching criterion similar to that
of [8] is adopted wherein nearest neighbor correspondences
are determined between source and target cube voxels. The
average Euclidean distanceδG and average color distance
δT , in Y-channel, between correspondences are combined in
δ = δG + 0.35δT . The final matching distance is symmetric
and considers the maximumδ among source-to-target and
target-to-source cubes. Cube dimension is chosen asL = 8
and search space dimensionS = 15.

Distortion between predicted and source clouds is as-
sessed through two peak signal-to-noise metrics, which con-
sider both geometry and texture degradations, and via subjec-
tive evaluation. The first metric (PSNR-Y-G), similar to that
of [8], determines for each voxel of the prediction a nearest
neighbor within the source cloud and derives the average
Euclidean distanceδG. Differently from other metrics [15],
the average Y-channel color distanceδT is jointly considered
asδ = δG + 0.35δT and reported in terms of a single mea-
surement PSNR-Y-G= 10 log(2552/δ). The second metric
(PSNR-P), developed in [16, 17], adopts frontal orthographi-
cal projections, i.e., visible PC voxels are projected ontoeach
of 6 projection planes parallel to the voxel surfaces, forming
2D images. From each of the 6 projected image pairs, orig-
inating from the predicted and source voxel sets, an overall
mean square error (MSE) in the Y-channel color component
is determined and PSNR-P= 10 log(2552/MSE). In order to
avoid rendering ambiguities, subjective quality evaluation is
performed through visual inspection of frontal orthographical
projections.

Speedups are measured as ratios between the full search
space size and a reduced search space size, resulting from
the elimination of target cube candidates whose occupancy
values lie beyond defined tolerance ranges. Excluded from
the full search space count is the trivial case with empty
target cube. Tolerance thresholds, in percentages, for ge-

ometryDG and textureDT are selected from the first and
second elements, respectively, of the ordered pairs{(∞,∞),
(100, 50), (90, 50), (80, 50), (70, 50), (60, 30), (50, 30),
(40, 30), (30, 30), (20, 10), (10, 10), (5, 10), (1, 10)}. Given
speedup-distortion tradeoffs, we resort to a model similar
to the BD metric [18], commonly used in assessing rate-
distortion efficiency, to compute average distortion gainsand
average speedups between the proposal and a reference curve
across a range of thresholds. Lastly, direct comparisons be-
tween motion vector fields (akin to optical flow), resulting
from different PCME configurations, are established through
average absolute error in flow endpoints as defined in [19].

The described experimental set up is used in assessing
performance of our G&T proposal and GO of [9]. The curves
of Fig. 3 and Fig. 4 forLongdress depict typical behavior also
observed in other data sets. Search space reduction through
occupancy map consultation provides significant speedups,
initially guaranteeing distortions (PSNR-Y-G and PSNR-P)
equivalent to those produced by full search PCME (speedup
1). With further speedup (e.g., 10) G&T outperforms GO in
terms predicted distortion as well as direct comparison of mo-
tion vector errors with respect to full search, see Fig. 4. In
spite of incurring some quality degradation when operatingat
speedup 10, these are deemed as acceptable, as supported by
visual inspection of the images in Fig. 5. In this case, quality
of predicted frames (c) and (d) is similar to that of full search
(b). Nevertheless, difference images (e) and (f) indicate supe-
rior quality of G&T relative to GO.
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Fig. 3: PSNR-Y-G and PSNR-P distortions as a function of speedup
using G&T and GO occupancy maps forLongdress.

Objective comparisons between distortion-speedup curves
(e.g., Fig. 3) are established with a BD-like model [18] and
summarized in Tables 1 and 2 for all sequences. The G&T
proposal outperforms GO in most cases. In few exceptions,
such asDavid, performance is similar with an overlap among
curves. Distortion gains averaged across all sets are 0.47 dB
and 0.18 dB, in PSNR-Y-G and PSNR-P, respectively, while
speedup increases correspond to 26.9% and 10.2% at equiv-
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Fig. 4: Motion vector field errors [19], with respect to full search
PCME, as a function of speedup using G&T and GO occupancy
maps forLongdress.

alent prediction quality. More modest gains under PSNR-P
reflect the lower sensitivity of this metric to quality degrada-
tion. Note that flatter PSNR-P curves may lead to numerical
modeling instability reflected in some corresponding speedup
increase measurements.

5. CONCLUSIONS

We have presented a work in progress which expands and
improves upon prior study by considering the usage of tex-
ture descriptors, in addition to geometry, for the speedup of
PCME. Texture characteristics of the search space are rapidly
computed with a one-pass update formula and succinctly
stored as scalar-values for multiple, subsequent referencing
within an occupancy map. Results using the proposed G&T
maps present significant speedup, up to 10 times over full
search and 26.9% on average relative to GO, while maintain-
ing equivalent quality. Future work includes the development
of adaptive thresholding and analysis of distortion-speedup
operating points for PCME optimization.

Table 1: Average PSNR-Y-G and PSNR-P gains of G&T proposal
relative to GO for various data sets.

Data Set Avg. PSNR-Y-G gain Avg. PSNR-P gain
Andrew 0.42 dB 0.12 dB
David -0.01 dB -0.18 dB
Longdress 0.55 dB 0.43 dB
Loot 0.26 dB 0.16 dB
Phil 0.73 dB -0.09 dB
Red and Black 0.26 dB 0.12 dB
Ricardo 0.20 dB 0.02 dB
Sarah 0.30 dB -0.07 dB
Soldier 1.45 dB 1.10 dB

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Detail crops from images of frontal orthographical projec-
tions of PCs from (a) source frame, predicted with (b) full PCME,
(c) GO, (d) G&T occupancy maps (at speedup 10) and, respectively
in (e) and (f), difference images of predicted (c) and (d) with respect
to source (a) forLongdress, 10th frame.

Table 2: Average speedup increase at equivalent quality (PSNR-Y-G
or PSNR-P) of G&T proposal relative to GO for various data sets.

Data Set
Avg. speedup Avg. speedup

increase (PSNR-Y-G) increase (PSNR-P)
Andrew 22.2 % -8.9 %
David 1.2 % 50.5 %
Longdress 48.7 % 22.1 %
Loot 16.8 % 23.5 %
Phil 51.5 % 29.2 %
Red and Black 18.6 % -26.6 %
Ricardo 12.6 % 6.8 %
Sarah 32.7 % 1.1 %
Soldier 37.8 % -5.8 %



6. REFERENCES

[1] S. Schwarz, et al., “Emerging MPEG standards for point
cloud compression,”IEEE Journal on Emerging and Se-
lected Topics in Circuits and Syst., vol. Pre-Print, 2018.

[2] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression
of point cloud streams,” inIEEE Int. Conf. on Robotics
and Automation, May 2012.

[3] C. Loop, C. Zhang, and Z. Zhang, “Real-time
high-resolution sparse voxelization with application to
image-based modeling,” inProc. High-Performance
Graphics Conf., Jul. 2013.

[4] C. Zhang, D. Florencio, and C. Loop, “Point cloud
attribute compression with graph transform,” inProc.
IEEE Int. Conf. on Image Process., Oct. 2014.

[5] R. L. de Queiroz and P. A. Chou, “Compression of 3D
point clouds using a region-adaptive hierarchical trans-
form,” IEEE Trans. Image Process., vol. 25, no. 8, Aug.
2016.

[6] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based
compression of dynamic 3D point cloud sequences,”
IEEE Trans. Image Process., vol. 25, no. 4, Apr. 2016.

[7] R. Mekuria, K. Blom, and P. Cesar, “Design, imple-
mentation and evaluation of a point cloud codec for tle-
immersive video,”Trans. Circuits Syst. Video Technol.,
vol. 27, no. 4, Apr. 2017.

[8] R. L. de Queiroz and P. A. Chou, “Motion-compensated
compression of dynamic voxelized point clouds,”IEEE
Trans. Image Process., vol. 26, no. 8, Aug. 2017.

[9] C. Dorea and R. L. de Queiroz, “Block-based motion es-
timation sppedup for dynamic voxelized point clouds,”
in Proc. IEEE Int. Conf. on Image Process., Oct. 2018.

[10] A. M. Tourapis, “Enhanced predictive zonal search for
single and multiple frame motion estimation,”Proc.
SPIE Visual Comm. and Image Process., vol. 4671,
2002.

[11] E. d’Eon, B. Harrison, T. Myers, and P. A.
Chou, “8i voxelized full bodies - a voxelized
point cloud dataset,” in ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, Geneva, Switzerland, Jan.
2017.

[12] F. A. Sadjadi and E. L. Hall, “Three-dimensional mo-
ment invariants,”IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 2, no. 2, Mar. 1980.
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