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ABSTRACT as PCME) plays a key role in the design of a successful pre-

Motion estimation in dynamic point cloud analysis or com-dictive coder. To exploit temporal redundancy, [6] perferm
pression is a computationally intensive procedure gene?CME by matching features derived from graph-based rep-
ally involving a large search space and often complex voxelesentations of successive clouds. Block-based pasditioe
matching functions. We present an extension and improvenatched to those of temporally adjacent clouds in [7, 8]. The
ment on prior work to speed up block-based motion estimaformer uses an iterative closest points (ICP) algorithnoto |
tion between temporally adjacent point clouds. We intreduc cate a correspondence while the latter proposes optirizati
local, or block-based, texture descriptors as a compleme®f @ block-matching metric. PCME, nevertheless, may ac-
to voxel geometry description. Descriptors are organized i count for significant portions of processing time.

an occupancy map which may be efficiently computed and This work concerns the speeding up of block-based
stored. By consulting the map, a point cloud motion estimatoPCME. It is an extension and improvement on prior work [9].
may significantly reduce its search space while maintaining herein, the use of occupancy maps containing local statist
prediction distortion at similar quality levels. The pregal  based on geometry, i.e., 3D moment-based shape descyiptors
texture-based occupancy maps provide significant speedupas used to efficiently restrict PCME search space. Here,
an average of 26.9% for the tested data set, with respect @ccupancy maps based on local texture characteristics are
prior work. introduced to offer further PCME speedups while main-
taining provided quality. The proposed framework may be
directly applied in codecs such as [7,8] or in the develogmen
of PCME-dependent applications which use a block-based
paradigm. Note that assessment of block-based PCME ac-
1. INTRODUCTION curacy or its compression efficiency is beyond the scope of

. ) . the current study. The novel texture-based occupancy maps
Among the novel 3D representations for imaging systems, e sed in conjunction with those of [9] and contribute to

point clouds (PCs) constitute a geometrically simple yet ve gjgnificant performance gains while respecting constaint
satile alternative, offering relative freedom to acquositand imposed for their efficient computation and storage.
rendering procedures. They are a set of pointg, z) in 3D Block-based PCME and prior work are briefly reviewed

space with associated data, such as color. In voxelizedigJou in Sec. 2. The proposed texture-based occupancy map is in-
the points assume integer coordinate values on a regular 3[P o

) . I ) oduced in Sec. 3. Experimental results and conclusioms ar

grid. Points within such a grid are called voxels and may bediscussed in Secs. 4 and 5
occupied or not. A temporal sequence of clouds, organized in ' '
frames, may be used to depict movement of dynamic objects
or scenes. 2. PREVIOUS WORK

The large amount of data generally involved in this 3D
representation requests compression. This is, in fact, CUA PC may be partitioned into blocks, in particular, non-
rent subject of standardization efforts [1]. Previous Esd overlapping cubes of dimensidhx L x L. In block-based
have focused on compression of geometry [2, 3] and color alCME, for each such cube of a current (or source) frame,
tributes [4, 5] pertaining to static PCs while dynamic (_:Isud a search space of siz¢ x S x S is defined in a previous
have been addressed in [6-8]. In the latter case, motion esfor target) frame around a co-located cube, as exemplified in
mation (ME) between PCs (a process henceforth referred i0ijg. 1. Among the set of.-dimensioned target cubes avail-

This work was partially supported by FAPDF and by CNPq grants@ble within the S_earCh space, a best match with respect to
301647/2018-6 and 428084/2016-8. the source cube is determined. In a full search scen&fio,

Index Terms— Point clouds, volumetric media, 3D, mo-
tion estimation.
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Fig. 2: A displacement of cub€’ (in z-direction) introduces voxels
lying on the frontal plane (set, in green) and eliminates those from
the rear surfaceR, in red) formingC’.

(x,v, z) in a voxel space of dimensioné>.

Fig. 1: Examples from the PC sequeriasngdress[11] shown at dif- 3D moments have the added benefit of being computable

ferent time instants and perspectives. Motion estimation establish&4th one-pass update formulas [13], a particularly useful

a correspondence between a source cube (in yellow) of curreméfra Property when constructing occupancy maps by incremen-

and a target cube within a search space (in green) of previous frami@lly scanning through multiple overlapping partitionsore

sider, without loss of generality, a cube sliding along the

target cubes are considered in optimization. The motion vece-direction as illustrated in Fig. 2. Each incrementimtro-

tor indicating selected target cube position relative torese  duces a sefl and discards a sé of L2 points. The statistical

is used towards compensation, forming a prediction of thenoments of next cub&” may be updated in terms of the of

current frames’s PC. This process presents some diffesencthe previous cub&’ and those ofA and B. For example,

with respect to ME in conventional 2D video. The 3D grid the zero-th ordered moment,, representing cube size or

is often sparsely populated, containing unoccupied voxelsaumber of occupied voxels, is updated as

Moreover, the number of occupied voxels may vary from

frame to frame. Cube-matching criteria should thus account MGy = M + Mghy — ME,. (2

for these geometry differences. Complexity levels are also

aggravated by the increase in search space dimension. Fast

matching schemes commonly used in 2D video, e.g., [10], 3. TEXTURE-BASED OCCUPANCY MAPS

must operate with prior knowledge of geometry for adequate

search space subsampling. Besides geometry, we expand the framework by considering
Prior work [9] introduced an occupancy map to speedugiexture as a local descriptor. Texture-based occupancy map

PCME. The map for a PC is efficiently pre-computed withare used in conjunction with geometry and, likewise, arecom

one-pass update formulas (discussed at the end of this sgdted in the same one-pass update step described previously

tion). The descriptors therein are simple yet discrimireati We adopt the average luma component of the occupied vox-

and, as scalar values, may be succinctly stored for multiplels within a cube as a simple yet discriminative descriftet.

referencing. By consulting the map and comparing the occuY (,y, 2) represent the luma intensity at poiat, y, =) and

pancy value of the given source cube to that of a candidatés (2, y, z) the summation of intensities within a cubeof

target cube, the motion estimator may discard target cubelimensionZ and origin(z, y, z) such that

and avoid evaluation of, generally costly, cube-matchiitg w

candidates deemed incompatible. Speedup is measured as the e B 8" v 3

number of discarded candidates with respect to full search. 5 (2,y,2) = Z Z Z vy, 2)Y (@y,2). ()

. . . . =0 y=0 2=0
No assumptions are made on the cube-matching criterion; ey

thus, the framework may be generically applied. The update formula is analogous to (1), i.e.,
The occupancy maps of [9] describe local geometry, or
spatial distribution of voxels within cubes, through sttial YSC' = YSC + yé“ — YSB (4)

moments. A 3D moment [12] of order+ ¢ + r is defined as
and the texture-based descriptor for a given cube is defimed a
Mo = (e 1) Y =Y§ /Mg, The texture-based occupancy map is thus
pqr—zzzxyzv(xvyaz) ( ) OT(Q?,:%Z):YC.

In this work we have selected cube size as our local geom-
wherev(z, y, z) is the voxel density function, assuming value etry descriptor due to reported efficiency [9]. The geometry
1 for occupied and for unoccupied voxels, within a domain based occupancy map is thOg; (z, y, z) = M.
of size L3. The occupancy ma@(z,y, z) is formed by the The motion estimator compares the local statistic of
3D moments of all cube partitions of dimensifrand origin ~ the current source cub®:"¢(z,y,z) to those contained

z=0 y=0 2=0



in the map and restricts the search space to target cubemetry D and textureDr are selected from the first and

presenting similar statistics, i.e., within a tolerancegade-  second elements, respectively, of the ordered daixs, co),

fined by a threshold; such that(1 — D;)O;"™(z,y,2z) <  (100,50), (90,50), (80,50), (70,50), (60,30), (50,30),

O (a' y,2") < (1 + D;)03™(x,y, 2),i € {G, T}. (40, 30), (30, 30), (20,10), (10,10), (5,10), (1,10)}. Given
speedup-distortion tradeoffs, we resort to a model similar

to the BD metric [18], commonly used in assessing rate-

distortion efficiency, to compute average distortion gaind

p average speedups between the proposal and a reference curve
data sets, i.e., the upper body sequeraesew, David, Phil, across a range of thre_sholds. I__astly, di_rect comparison_s be
Ricardo, Sara [14] and full body human subjectsongdress, tween .mot|0n vector f|eld_s (ak!n to optical floyv), resulting
Loot, Red and Black, Soldier [11]. All have spatial resolution from different PCME co.nﬁguratlons, are estabh.shed. throug

of 512 % 512 x 512 voxels and are furnished with RGB color average absolute error in flow endpoints as defined in [19].

attributes. For all sets, the #Grame is chosen as the source | "€ described experimental set up is used in assessing
and the 8 as target. performance of our G&T proposal and GO of [9]. The curves

Results of our geometry-and-texture (G&T) proposaIOf Fig. 3 and Fig. 4 fot.ongdress depict typical behavior also

were compared to those of full search PCME and those Oqabserved in other data sets. Search space reduction through

; ; occupancy map consultation provides significant speedups,
prior work [9] employing geometry-only (GO) occupancy . . ; .
maps, as defined in Sec. 3, in terms of prediction distor'—n't"'?1I|y guaranteeing distortions (PSNR-Y-G and PSNR-P)
tion, speedup and motion vector error. In the current PCM quwglent to those produced by full search PCME (speec_iup
implementation, a cube-matching criterion similar to that ). With further speedup (€.g., 10) G&T outperforms GO in

of [8] is adopted wherein nearest neighbor corres:pondencé‘grmS predicted distartion as well as direct comparisonai m

are determined between source and target cube voxels. TH8.n vefc.tor errors with res;)lgctdto fu'é sgarchh see Fig. 4 In
average Euclidean distanég; and average color distance spite ofincurring some quality degradation when operating

or, in Y-channel, between correspondences are combined ﬁ‘oeedup 10, these are deemed as acceptable, as supported by

- ; ; - ; I inspection of the images in Fig. 5. In this case, dqyali
0 = d¢ + 0.3567. The final matching distance is symmetric visuatir LD
and considers the maximuth among source-to-target and of predicted frames (c) and (d) is similar to that of full sgar

target-to-source cubes. Cube dimension is chosdnh as8 (b). Nevertheless, difference images (e) and (1) indicapes
and search space dimensisin- 15 rior quality of G&T relative to GO.

Distortion between predicted and source clouds is as-
sessed through two peak signal-to-noise metrics, which con 35
sider both geometry and texture degradations, and viasubje
tive evaluation. The first metric (PSNR-Y-G), similar to tha 34t
of [8], determines for each voxel of the prediction a nearest
neighbor within the source cloud and derives the average
Euclidean distancés. Differently from other metrics [15],
the average Y-channel color distangeis jointly considered
asd = 0g + 0.3567 and reported in terms of a single mea-
surement PSNR-Y-G= 101log(255%/4). The second metric
(PSNR-P), developed in [16, 17], adopts frontal orthograph

4. EXPERIMENTAL RESULTS

Our tests were conducted on a variety of publicly availalite

Distortion of predicted point cloud (Longdress)

Distortion [dB]
w w
N w

w
s

. . . .. . —&— Geometry & Texture (PSNR-Y-G)
cal projections, i.e., visible PC voxels are projected @ztoh 30 [ | —>— Geometry Only (PSNR-Y-G)
of 6 projection planes parallel to the voxel surfaces, foigni 4 Goomeiy oy Goninp)
2D images. From each of the 6 projected image pairs, orig- 2 o 2
inating from the predicted and source voxel sets, an overall Speedup

mean square error (MSE) in the Y-channel color component
is determined and PSNR=P 10 log (2552 /MSE). In order to Fig. 3: PSNR-Y-G and PSNR-P distortions as a function of speedup
avoid rendering ambiguities, subjective quality evalratis ~ USiNg G&T and GO occupancy maps famngdress.
performed through visual inspection of frontal orthogriaph Objective comparisons between distortion-speedup curves
projections. (e.g., Fig. 3) are established with a BD-like model [18] and
Speedups are measured as ratios between the full seastimmarized in Tables 1 and 2 for all sequences. The G&T
space size and a reduced search space size, resulting frgmoposal outperforms GO in most cases. In few exceptions,
the elimination of target cube candidates whose occupanauch adDavid, performance is similar with an overlap among
values lie beyond defined tolerance ranges. Excluded frorourves. Distortion gains averaged across all sets are 47 d
the full search space count is the trivial case with emptyand 0.18 dB, in PSNR-Y-G and PSNR-P, respectively, while
target cube. Tolerance thresholds, in percentages, for gepeedup increases correspond to 26.9% and 10.2% at equiv-
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Fig. 4: Motion vector field errors [19], with respect to full search
PCME, as a function of speedup using G&T and GO occupancy
maps forLongdress.

alent prediction quality. More modest gains under PSNR-P
reflect the lower sensitivity of this metric to quality dedea
tion. Note that flatter PSNR-P curves may lead to numerical
modeling instability reflected in some corresponding spped
increase measurements.

(d)

5. CONCLUSIONS

We have presented a work in progress which expands and
improves upon prior study by considering the usage of tex-
ture descriptors, in addition to geometry, for the speedup o
PCME. Texture characteristics of the search space ardyapid
computed with a one-pass update formula and SUCCInCﬂ¥ig. 5: Detail crops from images of frontal orthographical projec-

stored as scalar-values for multiple, subsequent reférgnc fons of PCs from (&) source frame, predicted with (b) full PCME,

(e) ®

within an occupancy map. Results using the proposed G& ) o, (d) G&T occupancy maps (at speedup 10) and, resphctive
maps present significant Speedup,_ up to 10 times over f_U||1 (e) and (f), difference images of predicted (c) and (d) with respec
search and 26.9% on average relative to GO, while maintainp source (a) fotongdress, 10" frame.

ing equivalent quality. Future work includes the developme
of adaptive thresholding and analysis of distortion-spged

operating points for PCME optimization. ) _ )
Table 2: Average speedup increase at equivalent quality (PSNR-Y-G

or PSNR-P) of G&T proposal relative to GO for various data sets.

Table 1. Average PSNR-Y-G and PSNR-P gains of G&T proposal

relative to GO for various data sets. Data Set Avg. speedup Avg. speedup
increase (PSNR-Y-G) | increase (PSNR-P)

Data Set | Avg. PSNR-Y-G gain | Avg. PSNR-P gain Andrew 22.2% -8.9%
Andrew 0.42 dB 0.12dB David 1.2% 0.5 %
David 20.01dB 20.18dB Longdress 48.7 % 221 %
Longdress 0.55 dB 0.43dB Loot 16.8 % 23.5 %
Loot 0.26 dB 0.16 dB Phil 51.5% 29.2%
Phil 0.73dB 20.09 dB Red and Black 18.6 % -26.6 %
Red and Black 0.26 dB 0.12dB Ricardo 12.6 % 6.8%
Ricardo 0.20 dB 0.02dB Sarah 32.7% 1.1%
Saran 0.30 dB 20.07dB Soldier 37.8% -5.8%
Soldier 1.45dB 1.10dB
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