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RESUMO

O aprendizado de máquinas e o aprendizado profundo são utilizados para a resolução de diver-
sos problemas, em diferentes áreas de atuação. Esse fato impulsiona o desenvolvimento de redes
neurais, além de estimular o crescimento do tamanho destas. Este estudo propõe um método para
reduzir o tamanho de redes neurais sem retreiná-las, relacionando a entropia dos pesos dos mode-
los e a acurácia dos modelos. Parte deste estudo foi dedicado à distribuição dos pesos, procurando
semelhanças entre elas e as distribuições conhecidas. Com intuito de reduzir o tamanho da rede foi
realizada a compressão do modelo por meio de vários tipos de quantização. Ao �nal deste estudo,
indica-se que é possível diminuir o tamanho da rede em 8 vezes, com um prejuízo não maior que
0,8% para as métricas de acurácia, além de mostrar que quantização com deadzone possui um bom
resultado para as redes testadas. E assim, a quantização e a codi�cação recomendadas podem ser
incorporadas a um formato de distribuição de redes neurais.

ABSTRACT

Machine learning and deep learning are used to solve di�erent problems in di�erent areas of exper-
tise. This fact drives the development of neural networks, in addition to stimulating the growth of
their size. This study proposes a method to reduce the size of neural networks without retraining
them, relating the entropy of the weights of the models and the accuracy of the models. Part of this
study is about the distribution of weights, their similarities, and speci�c distributions. We studied
various types of quantization in the compression of neural networks. This study indicates that it is
possible to reduce the size of the network by 8 times, with a maximum loss of 0.8% for the accuracy
metrics. The recommended quantization and encoding may be incorporated into a format for the
deployment of neural networks.
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1 INTRODUÇÃO

1.1 CONTEXTUALIZAÇÃO

O uso de Machine Learning (aprendizado de máquinas, ML) para resolução de problemas nas
mais variadas áreas é cada vez mais frequente e aplicável em diferentes contextos, sendo capaz de
responder a desa�os reais [1]. Entre suas aplicações podemos destacar desde as mais simples como
veri�car se um e-mail é ou não spam [2], o reconhecimento de letras em cartas [1], além de ques-
tões mais personalizadas, como quais situações e elementos podem afetar a retenção de alunos em
uma determinada universidade [3]. Além disso, ML pode ser usado em problemas mais comple-
xos como: detecção de derramamento de óleo pelas imagens de radar [4], direção segura em carros
autônomos [5] e detecção de fraudes �nanceiras [6].

Assim, do mesmo modo que modelos de ML, também as redes neurais (RN’s) que são modelos
computacionais inspirados (que buscam imitar) o funcionamento neural humano. Atualmente as
RN’s ganham espaço em diversas áreas mais robustas. Nesse contexto, surge a necessidade de desen-
volver modelos maiores que demandam de mais espaço de armazenamento e maior processamento
computacional.

Outro aspecto que ganha notoriedade nos dias atuais é a Internet of Things (internet das coi-
sas, IoT) que pode ser entendido como a interconexão de objetos do dia a dia pela internet. A área
de internet das coisas tem promovido desenvolvimento rápido de várias dispositivos e aplicações,
como o uso de aprendizado de máquina em dispositivos de sistema de compartilhamento de bici-
cletas [7] e o uso de equipamentos IoT para cuidados de saúde [8]. Atrelada a essa de�nição, existe
o campo edge computing, que pode ser entendido como equipamento IoT que tem a capacidade
de processar dados perto de sua origem [9]. Um bom exemplo é IoT industrial que realiza a incor-
poração da inteligência arti�cial (IA) com a �nalidade de encontrar novos insights industriais [10].
Essa vinculação se estende para as demais áreas de IoT. Com isso, o uso de IA com edge computing
também tem se desenvolvido [10].

Os equipamentos de IoT possuem recursos e energia limitados [11], [12]. Normalmente, os
modelos de IA precisam ser compactados e reduzidos para aplicativos IoT e edge computing. As-
sim, as tarefas de IA podem sobrecarregar os dispositivos de IoT e edge computing, pois estes têm
pouco poder computacional e baixa capacidade de armazenamento de dados [12]. Outro tipo de
equipamento que entra nessa lista são os celulares, uma vez que possuem recursos e energia restritos
tornando importante a compressão dos modelos de ML [11].

Em consonância com o tema de ML surge um relevante questionamento sobre a interoperabi-
lidade dos modelos de ML, devido à existência de vários arcabouços de ML e, em especial, de deep
learning (aprendizado profundo, DL), como Pytorch [13], Tensorflow [14], sendo que diversos ar-
cabouços não possuem integração entre si. Diante disso, surge a preocupação em não se prender a
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um framework especí�co e suas ferramentas. Com a �nalidade de preencher essa lacuna, o formato
ONNX (Open Neural Network eXchange) [15] foi desenvolvido com o objetivo de proporcionar a
interoperabilidade de modelos de ML e de DL.

1.2 MOTIVAÇÃO

O aumento do desenvolvimento de modelos de RN’s decorre, principalmente, da ampliação
do seu uso para os mais diversos problemas. Com o desenvolvimento da área em rápido progresso,
os tamanhos desses modelos também costumam �car maiores, uma vez que a tendência é que os
modelos sejam cada vez mais especializados e so�sticados.

Em contraposição ao cenário do aumento desses modelos, temos o uso de ML nos dispositivos
citados no parágrafo anterior (celulares, equipamentos IoT), em que pese esses dispositivos terem
seus recursos e espaço limitados. Assim, há uma preocupação com o tamanho que os modelos
podem ocupar nos equipamentos e do poder computacional exigido.

1.3 DEFINIÇÃO DO PROBLEMA

O padrão aberto ONNX busca sanar as di�culdades na distribuição de RN’s, para permitir que
vários arcabouços possam trabalhar em conjunto. Os meios para se reduzir o tamanho das RN’s sem
perder muita acurácia ganham cada vez mais espaço na literatura. A maioria das pesquisas envolvem
técnicas de compressão com retreino de RN ou a mudança da estrutura da RN [16]–[21]. Contudo,
esse tipo de compressão de modelos de ML necessita de um grande poder computacional. Por outro
lado, a compressão sem envolver retreino é um campo ainda pouco explorado.

1.4 OBJETIVOS

Os objetivos desse trabalho são:

1. Analisar a distribuição de amplitude dos pesos;

2. Analisar se existe correlação de algum modo entre os pesos das RN’s;

3. Determinar a melhor forma de quantização para os pesos e vieses de uma RN;

4. Aumentar a facilidade de distribuição de redes neurais;

5. Propor um método de comprimir os pesos e vieses no formato ONNX, sem o uso de re-
treino, de uma RN de forma a reduzir seu tamanho sem perda signi�cativa de acurácia (de
seu funcionamento).
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1.5 PUBLICAÇÕES

A pesquisa desenvolvida neste trabalho teve como base a publicação:

• "Codi�cação de Redes Neurais sem Retreino", Marcos Vinícius Tonin e Ricardo L. de Quei-
roz. Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, 2021. [22]

1.6 APRESENTAÇÃO DO MANUSCRITO

O Capítulo 2 apresenta alguns trabalhos correlatos a esta pesquisa, além dos conceitos neces-
sários para explicar o método proposto. No Capítulo 3, as comparações entre as quantizações de
vários tipos são expostas, bem como a comparação das distribuições dos pesos dos modelos com
distribuições de referências. Por �m, conclusões, trabalhos futuros estão presentes no Capítulo 4.
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2 REVISÃO BIBLIOGRÁFICA

2.1 INTELIGÊNCIA ARTIFICIAL

Inteligência Arti�cial (IA) é uma ciência que tentar fazer coisas que requerem uma inteligência
humana [23]. De certa forma, é a tentativa das máquinas reproduzirem comportamentos que são
essencialmente humanos em suas atividades. Podemos dizer que a IA, como um todo, engloba
outras duas principais subcategorias, como ilustrado na Figura 2.1: Machine Learning (ML) e Deep
Learning (DL) [24].

Figura 2.1: Estrutura da ciência IA.

• Machine Learning é um subgrupo de IA que busca automatizar a análise e tomada de deci-
são sem supervisão ou interferência humana [23]. A maioria dos algoritmos de ML tendem a
melhorar seu funcionamento a partir da experiência, podendo mudar seu comportamento e
suas operações [23]. Por outro lado, pode ser entendido como a capacidade do computador
aprender sem estar explicitamente programado para isso [24].

• Deep Learning é um ramo de ML que tem a �nalidade de imitar o funcionamento neural
humano. Deep Learning também é conhecido por permitir processar um nível elevado de
dados para encontrar padrões e relações que para os humanos não são facilmente encontrados
[24]. Podemos abranger os modelos DL em redes neurais que possuam três ou mais camadas
onde os computadores buscam imitar a forma como os neurônios funcionam [23].
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2.2 REDES NEURAIS

A arquitetura de um modelo DL pode ser considerada uma rede neural (RN), a depender se
a RN tem mais de três camadas, essa diferença será explicada posteriormente, quando de�nirmos
o que é camada e seus tipos. Uma rede neural arti�cial é uma técnica que procura simular o me-
canismo de conhecimento em organismos biológicos [25]. Podemos descrever o mecanismo bio-
lógico contendo neurônios que se conectam através de áxions e dendritos, os quais se comunicam
através de sinapses (local onde agem neurotransmissores) [25]. Portanto, as RN’s procuram simu-
lar esse mecanismo do sistema nervoso humano, fazendo um paralelo em que os neurônios seriam
as unidades computacionais, conectados por pesos e cada entrada de neurônio é multiplicada por
esse peso. A Figura 2.2 mostra a representação da RN. Assim, a rede neural arti�cial computa uma
função das entradas propagando as entradas do neurônio para sua saída, utilizando os pesos como
parâmetros intermediários [25]. A partir da Equação 2.1, temos a de�nição matemática do funci-
onamento de um neurônio de uma RN, as entradas (47) têm seus valores multiplicados pelo peso
que as conecta ao neurônio (>7). No neurônio ocorre a agregação das entradas multiplicadas pelos
pesos (

∑
) e a aplicação da função daquele neurônio (5()), produz a saída G.

Figura 2.2: Componentes básicos de uma Rede Neural Arti�cial.

G = 5

(
<∑
7

47 >7

)
(2.1)

As redes neurais podem ser de�nidas como sistemas massivos e paralelos, compostos por uni-
dades de processamento simples que computam determinadas funções matemáticas [26]. A partir
de um conjunto de exemplos apresentados, esses sistemas conseguem generalizar o conhecimento
adquirido para um conjunto de dados desconhecidos [27].

Outro fator importante sobre o funcionamento das RN’s é que o ‘conhecimento’ acontece
quando um peso tem seu valor atualizado [25] em decorrência de atividades que ocorreram. Muitas
vezes, essas atividades são conhecidas como treinamento em que a RN é alimentada com entradas
sabendo a saída correta. A partir dessas entradas e saídas, a RN é capaz de determinar se a saída

5



produzida (predição) por ela é a correta ou não e, com essa informação, os pesos são ajustados e
re�nados várias vezes para prover uma predição acurada [25].

2.2.1 Deep Learning e Machine Learning

Os modelos de DL podem ser comparados com modelos clássicos que são comumente usados
em ML com alto nível de abstração [23], uma vez que a maioria dos elementos básicos de DL são
inspirados em algoritmos tradicionais de ML [23]. A vantagem da DL acontece porque podemos
colocar várias unidades básicas juntas (separadas em pelo menos 3 camadas), além da aquisição do
conhecimento por cada peso para diminuir o erro de predição [25].

O ganho de DL em comparação a um modelo de ML é desencadeado quando estas unidades
computacionais básicas são combinadas e, os pesos dos modelos são treinados e alterados dina-
micamente [25]. Uma diferença notável entre ML e DL consiste que para os modelos de DL (e,
consequentemente, para RN’s) existe a tendência de ter uma maior acurácia quanto maior for a
quantidade de dados usados, como ilustrado na Figura 2.3 [25].

Figura 2.3: Comparação entre DL e ML, adaptado de [25].

2.2.2 Estrutura Básica

Uma RN pode ser organizada em camadas e nós; e, classi�cada em camadas simples e redes de
camadas múltiplas.

• Camada simples: composta pela camada de entrada e nó de saída (Figura 2.4(a)).

• Camadas múltiplas: composta por uma única camada de entrada, várias camadas ocultas e
uma de saída (Figura 2.4(b)).

Nas Figuras 2.4(a) e 2.4(b), � faz referência às entradas da camada de entrada e > são os valores
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dos pesos.

(a) Camada simples. (b) Camadas múltiplas.

Figura 2.4: Camadas simples e múltiplas.

Com a de�nição de camadas, podemos de�nir que as redes neurais serão consideradas modelos
deep learning se houver mais de três camadas. Assim, deve ter em sua composição, além da camada
de entrada e de saída, ao menos uma camada oculta. Portanto, podemos concluir que uma RN de
camada simples não é um modelo DL e que uma RN de camada múltipla será um modelo DL.

Vimos, então, que existem 3 elementos básicos em uma RN: os nós que são as unidades com-
putacionais de uma RN; os pesos, as conexões entre cada nó que recebe um valor e; as camadas, um
conjunto de nós que tem a mesma distância da entrada.

Há mais um elemento usado nas RN’s: o viés (bias, em inglês), esse tem o efeito de aumentar
ou diminuir a entrada de um nó (neurônio da rede neural), dependendo de seu valor [28]. O viés
se liga diretamente ao neurônio como na Figura 2.5. Pela Equação 2.2 que é derivada da equação
2.1, vemos que o viés (D) se liga diretamente ao nó.

G = 5

(
D +

<∑
7

47 >7

)
(2.2)

2.3 OPEN NEURAL NETWORK EXCHANGE

Os modelos de IA muitas vezes têm seu desenvolvimento e inferência presos a um arcabouço/-
ferramenta especí�ca, uma vez que a interoperabilidade com outras ferramentas não existe. E, com
a intenção de sanar essa barreira, o Open Neural Network eXchange foi desenvolvido.

O ONNX [15] é um formato para modelos de IA, para DL (tanto CNN quanto RNN) e ML.
Esse formato provê um arquivo de fonte aberto (open source) com o objetivo de ser comum às RN’s
e independentes de arcabouços, por exemplo: Pytorch [13], Keras [29], Tensor�ow [14], MxNet
[30].
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Figura 2.5: Viés em uma RN.

Para isso, o ONNX funciona de�nindo um conjunto comum de operadores internos (que po-
dem ser considerados como os blocos que constroem um modelo de IA), os tipos de dados padrões,
além de de�nir um modelo extensível de grafos de computação. Um ponto importante para esse
trabalho é que esse formato representa os pesos e os vieses, majoritariamente, como ponto �utuante
de 32 bits, no padrão IEEE 754 [31] e, por vezes, como ponto �utuante de 64 bits [15].

A atribuição mais importante do ONNX é ser uma representação intermediária de um modelo
que permite a interoperabilidade de um ambiente para outro, não se restringindo a um único fra-
mework, conforme mostra o �uxo da Figura 2.6. Portanto, sustenta a ideia de que embora tenha
sido usado, por exemplo, o Pytorch para criar e treinar uma rede, podemos avaliá-la e utilizá-la com,
por exemplo, Tensorflow.

2.3.1 Modelos fornecidos

Além de possibilitar a exportação de modelos de IA próprios, o ONNX provê uma série de
modelos conhecidos de exemplos [15], que são divididos em:

• Classi�cação de imagem;

• Detecção e segmentação de imagem;

• Análise facial, corporal e gestual;

• Manipulação de imagem e;

• Compreensão de máquinas.
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Figura 2.6: Ecossistema ONNX, adaptado de [32].

Para este trabalho, os modelos de classi�cação de imagens são os mais utilizados para teste e va-
lidação. Nessa classi�cação temos as redes: MobileNet [33], AlexNet [34], GoogLenet [35], VGG
[36], SqueezeNet [37], Shufflenet [38] e EfficientNet [39]. Essas redes citadas e outras serão utiliza-
das para o desenvolvimento deste trabalho.

2.4 MÉTRICAS PARA MACHINE LEARNING E DEEP LEARNING

Os modelos de IA (em especial de ML e DL) têm por essência trabalhar de forma automatizada,
sem intervenção humana, por isso para esses modelos é importante veri�carmos e validarmos o seu
funcionamento. Outro ponto importante se deve ao fato de que esses modelos fazem atividades
diferentes, seja no seu funcionamento ou na sua utilidade. Os principais tipos de atividades dos
modelos de IA são:

• Classi�cação: esses modelos tem como função tentar descobrir padrões entre os dados e fazer
alguma conclusão sobre eles. Por exemplo, um modelo pode ler um email e classi�cá-lo em
spam ou não.

• Regressão: através do estudo e análise dos dados de entrada, o modelo tenta prever outra in-
formação. Por exemplo, retornar o valor de um imóvel, a partir de suas características iniciais.

• Ordenamento: esse tipo de modelo buscar ordenar uma lista baseado nos dados de entrada.

Como há diferentes tipos de modelos que fazem variadas atividades não podemos usar uma
métrica universal para tudo, costuma-se utilizar métricas especí�cas a depender do tipo de atividade
do modelo, por exemplo, para [40]:
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• classi�cação: acurácia, precisão, recall, F1-score;

• regressão: soma dos erros quadrados (SSE), soma dos erros absolutos (SAE), média dos erros
quadrados (MSE), média dos erros absolutos (MAE);

• geração de imagem: PSNR (relação sinal ruído de pico);

• Ordenamento: Mean reciprocal rank (MRR).

Neste trabalho, as métricas que mais nos interessam são as de classi�cação e ordenamento.

2.4.1 Métricas de Classificação

A matriz de confusão é importante para entender as métricas relacionadas à classi�cação. Ela de-
talha a classi�cação de cada classe feita pelo modelo e a classi�cação que seria correta [40], portanto
em suas colunas estão dispostos os resultados esperados e nas linhas estão os resultados preditos pelo
modelo. A Tabela 2.1 considera um exemplo de 100 elementos, divididos em 50 para cada classe. A
Tabela 2.2 traz outro exemplo com 3 classes e 160 elementos.

Tabela 2.1: Tabela confusão para 2 classes.

Predito
Esperada Classe 1 Classe 2

Classe 1 40 10
Classe 2 5 45

Tabela 2.2: Tabela confusão para 3 classes.

Predito
Esperada Classe 1 Classe 2 Classe 3

Classe 1 40 8 2
Classe 2 5 35 10
Classe 3 5 7 48

Nas Tabelas 2.1 e 2.2, as colunas representam a saída esperada do modelo e as linhas, por sua
vez, representam o que foi predito pelo modelo.

2.4.1.1 Acurácia

Acurácia é uma medida simples, a razão entre o número de predições corretas e o número total
de predições [40]:

022 =
Predições Corretas

Total Predições . (2.3)

Para a Tabela 2.1, a acurácia é igual 0,85; para a Tabela 2.2, acurácia é 0,7687.

10



2.4.1.2 Acurácia por classe

A acurácia por classe é uma variação da acurácia, mas calculando a média da acurácia de cada
classe separada.

0222:0AA4 =

∑ Predições Corretas por Classe
Total de Predições por Classe

Total de Classes . (2.4)

Podemos dizer que a acurácia simples é uma micromédia (Eq. 2.3) e acurácia por classe, uma macro-
média (Eq. 2.4) [40]. Na Tabela 2.1, temos o valor igual ao da acurácia simples, mas para a Tabela
2.2, um resultado de 0,7666 seria obtido:

2.4.1.3 Precisão

Pela Equação 2.5, a precisão é utilizada para indicar a relação entre predições corretas para a
classe X e todas as predições para classe X [40]:

precisão =
Predições Corretas da Classe X

Total de Predições para Classe X . (2.5)

Para a Tabela 2.1, a precisão da classe A é 0,888; enquanto que para a classe B a precisão é 0,8181.
Na Tabela 2.2, as precisões são de 0,8; 0,7 e 0,8 para as classes A, B e C, respectivamente.

2.4.1.4 Recall

O Recall da classe X é a métrica usada para indicar a relação entre as predições corretas da classe
X e total de predições corretas que foram feitas (Eq. 2.6) [40].

@420:: =
Predições Corretas da Classe X

Total de Predições Corretas para todas as Classes . (2.6)

Na Tabela 2.1, o recall é 0,8 para a classe A, enquanto que para a classe B o recall é de 0,9. Na Tabela
2.2, as classes A, B e C possuem um recall de 0,8; 0,7 e 0,8; respectivamente.

2.4.1.5 F1-score

É uma forma de combinar as métricas recall e precisão, para associá-las usa-se a média harmô-
nica, conforme Equação 2.7.

� 1A2=@4 = 2 ×
precisão × @420::
precisão + @420:: . (2.7)

Os resultados F1 são:

• Tabela 2.1: 0,842 e 0,857 para as classes A e B, respectivamente.

• Tabela 2.2: 0,8; 0,7 e 0,8 para as classes A, B e C, respectivamente.
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2.4.2 Métricas de Regressão

Nas tarefas de regressão, o modelo prediz um valor. Por exemplo, o preço de um produto pode
ser de�nido com o uso de um modelo de regressão [40]. Logo, as métricas de classi�cação não são
uma boa escolha, uma vez que essas trabalham com classes �xas.

2.4.2.1 Soma de Erros

Uma das métricas mais comuns é a root mean square error (RMSE, Eq. 2.8), ou ainda, raiz
quadrada do erro médio [40], porém aqui podemos também descrever as métricas SSE (Eq. 2.9),
MSE (Eq. 2.10), SAE (Eq. 2.11) e MAE (Eq. 2.12).

'"(� =

√∑<
7=1(G7 − Ĝ7)2

<
, (2.8)

((� =

<∑
7=1
(G7 − Ĝ7)2, (2.9)

"(� =

∑<
7=1(G7 − Ĝ7)2

<
, (2.10)

( �� =

<∑
7=1
( |G7 − Ĝ7 |), (2.11)

"�� =

∑<
7=1( |G7 − Ĝ7 |)

<
. (2.12)

Para as Equações 2.8, 2.9, 2.10, 2.11 e 2.12, temos que < é a quantidade total de pontos, G7 é
referente ao 7-ésimo elemento da lista G, já Ĝ7 é o elemento na posição 7 da segunda lista, Ĝ.

2.4.3 Ordenamento

O tipo de tarefa de ordenamento é similar à tarefa de classi�cação, desse modo podemos com-
partilhar algumas métricas como: precisão, recall e F1 score [40]. Um modelo que pontua uma
série de elementos e os ordena é considerado um tipo de modelo de ordenamento.

2.4.3.1 Ganho Cumulativo Descontado Normalizado

O ganho cumulativo descontado normalizado é, comumente, utilizado para aferir a e�ciência
dos algoritmos de pesquisa na internet, além de ser usado em outras aplicações similares. Para enten-
der o ganho cumulativo descontado normalizado (GCDN) temos que primeiro entender o que é
ganho cumulativo (GC). Segundo a Equação 2.13, temos que GC (de uma lista de resultados de ta-
manho >) é de�nido como a soma da relevância de cada item até a posição > [41]. Cada item dessa
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lista de tamanho > tem uma pontuação de relevância associada a ela. A pontuação de relevância
pode ser dada, por exemplo, através de uma pesquisa feita entre uma população.

��> =

>∑
7=1
@4:7 , (2.13)

onde @4:7 é a pontuação de relevância do resultado da posição 7. A��> não é afetada pela troca de
posição de resultados, assumindo que a troca é de um item com posição menor que >.

Assim, GCDN e sua versão não normalizada GCD (ganho cumulativo descontado) buscam
explorar o conceito de que os resultados com maior probabilidade são mais relevantes (os itens
que aparecem no início de uma lista ordenada são os de maior classi�cação) [40]. Portanto, essas
métricas (GCDN e GCD) assumem que, em uma lista ordenada, os objetos mais relevantes são,
também, os mais valiosos [41], [42]. Outro ponto, quanto menor a posição de um objeto relevante
menos valioso se tornará, uma vez que será menos provável de ser examinado [41], [42].

A diferença entre o GCD e GC ocorre quando no ganho cumulativo a troca de posição não
altera o resultado (dada a restrição da troca ser para uma posição menor que >), mas o GCD aplica
descontos em itens mais abaixo da lista decrescente [40], sendo o GCD de�nido como [41], [42]:

���> = @4:1 +
>∑
7=2

@4:7

log2 7
=

∑>

7=1(2
@4:7 − 1)

:= 62(1 + 7)
, (2.14)

na Equação 2.14 em que @4:1 é a relevância do primeiro item. A divisão por log2 7 tem a função
de penalizar os itens de acordo com sua posição. Por exemplo, o décimo item da lista teria sua
pontuação de relevância (@4:10) dividida por log2 10 = 3.322.

O problema da métrica GCD é que ela pode variar de acordo com o tamanho da lista, pois uma
lista maior terá maiores descontos aplicados. Então a versão normalizada da GCD, conhecida como
GCDN, normaliza o resultado da GCD de forma que a variação de tamanho da lista não implique
em mudanças de resultados. A GCDN divide a GCD pelo score perfeito da GCD, conhecido como
DCG ideal (GCDI) [41], [42], o DCG ideal é alcançado quando a lista está ordenada perfeitamente
pela relevância de cada item, da maior relevância para a menor. Assim, podemos de�nir a GCDN
conforme a Equação 2.15.

���#> =
���>

����
. (2.15)

O���#> tem seu valor sempre entre 0 e 1.

2.4.3.2 Reciprocal Rank

A medida reciprocal rank pode ser utilizada em aplicações que possuem apenas um único item
relevante [42]; a MRR, por sua vez, é utilizada para avaliar processos que produzem uma lista de
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possíveis respostas, ordenadas pela probabilidade de importância [40], sendo mais indicada para
quando há mais de um resultado relevante.

"'' =
1
&

&∑
7=1

1
posição

7

, (2.16)

sendo& a quantidade total de consultas feitas e posição
7

a colocação em que o elemento da consulta
foi encontrado.

2.4.4 Métricas para Classificação de Imagem

Para o dataset ILSVRC (ImageNet Large Scale Visual Recognition Challenge [43]) foram pro-
postas métricas de acurácia e de erro que são utilizadas para avaliar a classi�cação de imagem.

2.4.4.1 Erro e Acurácia Top 1

A acurácia Top 1 (0221) ocorre quando a saída mais provável do modelo corresponde à resposta
esperada. Já, o erro (4@@1) é quando essa saída não corresponde.

0221 =
1, ("1 = �) ,

0, ("1 ≠ �)
, (2.17)

4@@1 =
1, ("1 ≠ �) ,

0, ("1 = �)
, (2.18)

em que�) é a saída verdadeira (ground truth), e ("1 é a saída mais provável do modelo.

2.4.4.2 Erro e Acurácia Top 5

A acurácia Top 5 (0225) acontece quando uma das cinco saídas mais prováveis do modelo cor-
responde à resposta esperada. Já, o erro (4@@5), quando as cinco saídas mais prováveis não corres-
pondem a saída esperada.

0225 =

1, ("1 = �) ou ("2 = �) ou ("3 = �) ou ("4 = �) ou ("5 = �) ,

0, 2.2.
,

(2.19)

4@@5 =

1, ("1 ≠ �) e ("2 ≠ �) e ("3 ≠ �) e ("4 ≠ �) e ("5 ≠ �) ,

0, 2.2.
, (2.20)

("1 até ("5 correspondem às 5 saídas do modelo com maior probabilidade, sendo ("1 a mais
provável e ("5, a quinta mais provável.
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Para elucidar o funcionamento dessa métrica, utilizamos a Figura 2.7 como entrada do modelo e
a Tabela 2.3 para exempli�car uma possível saída de um modelo a partir da Figura 2.7. Com intuito
de demonstrar o funcionamento foram consideradas 3 cenários:

• Cenário 1 - Tiger cat (saída esperada): acurácia Top 1 e Top 5 é igual a 1 e 4@@1 = 4@@5 = 0 ,
pois a Tiger cat é a classe mais provável do modelo �ctício.

• Cenário 2 - saída esperada Egyptian cat: na Tabela 2.3, Egyptian cat é a terceira saída mais
provável, portanto, temos que 0221 = 0, 0225 = 1, além de, 4@@1 = 1 e 4@@5 = 0.

• Cenário 3 - Bengal cat (saída esperada): a saída não está entre as 5 classes mais prováveis,
logo o resultado será inverso ao do cenário 1. 0221 = 0225 = 0 e 4@@1 = 4@@5 = 1.

A Tabela 2.4 sintetiza os resultados para as métricas acurácia e erro (Top 1 e Top 5) dos cenários
apresentados acima.

Figura 2.7: Imagem de exemplo para classi�cação de uma RN.

Tabela 2.3: Exemplo de saída de um modelo.

Rank Classe Probabilidade

1 tiger cat 0.432
2 lynx, catamount 0.281
3 tabby, tabby cat 0.183
4 Egyptian cat 0.0895
5 tiger, Panthera tigris 0.011
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Tabela 2.4: Valores das métricas para diferentes resultados.

Cenário Saída Esperada Acurácia Top 1 Erro Top 1 Acurácia Top 5 Erro Top 5

1 tiger cat 1.0 0.0 1.0 0.0
2 Egyptian cat 0.0 1.0 1.0 0.0
3 Bengal cat 0.0 1.0 0.0 1.0

2.5 QUANTIZAÇÃO ESCALAR

A quantização escalar é uma etapa importante deste trabalho, após o entendimento da arquite-
tura das redes neurais, os pesos delas serão extraídos. Esses pesos, então, serão quantizados e recons-
truídos a partir do valor quantizado. Para entender a quantização, é preciso analisar a conversão
analógico-digital, que pode ser dividida em três processos básicos [44] como ilustrado na Fig. 2.8.

Figura 2.8: Fluxo do conversor analógico digital.

• Amostragem: trata da conversão de um sinal contínuo para um sinal discreto, obtendo amos-
tras do sinal contínuo em um determinado instante [44], tornando o sinal discreto no tempo
amostrado.

• Quantização: a conversão de um valor com amplitudes não estabelecidas em um valor dis-
creto selecionado dentre possíveis �nitos valores [44]. O sinal, portanto, é discreto no tempo
e na amplitude.

• Codi�cador: cada valor quantizado será representado por uma sequência binária [44].

Em relação à quantização, essa pode ser entendida como a transformação de um sinal de ampli-
tude contínua em um sinal com amplitude discreta [44]. Em resumo, a quantização converte do
contínuo para o discreto [45].

Ainda, a quantização pode ser uniforme, contendo espaçamento igual entre cada nível existente,
sendo o intervalo constante para cada nível [46], ou não uniforme, que tem diferentes espaçamentos
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para cada nível.

2.5.1 Quantização uniforme

Há várias formas de realizar a quantização uniforme, as duas mais conhecidas são as midrise e
midtread [47]. Seja - o valor de um peso a ser quantizado, -? o valor que será passado ao codi�-
cador, -̂ o valor reconstruído pelo codi�cador, Δ o tamanho do passo de quantização e o operador
@=C<3(- ) que arredonda o valor - para o número inteiro mais próximo. O processo de quanti-
zação por um quantizador midtread é dado por

-? = @=C<3

(
-

Δ

)
, (2.21)

enquanto a reconstrução é dada por
-̂ = Δ-? . (2.22)

Por outro lado, a quantização midrise (Eq. 2.23) e sua reconstrução (Eq. 2.24) podem ser de�-
nidas como:

-? = A(- )
⌈
-

Δ

⌉
, (2.23)

-̂ = A(-?)Δ
(
-? −

1
2

)
, (2.24)

onde a função s(- ), de sinal, retorna 1 se o valor de - for positivo e -1, caso contrário, enquanto o
operador d- e é conhecido como ceil e retorna o arredondamento superior do valor - . As quan-
tizações midrise e midtread são ilustradas na Figura 2.9, onde o passo de quantização usado foi
Δ
2 .

(a) Midrise. (b) Midtread.

Figura 2.9: Quantização Uniforme: Midrise e Midtread.
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A vantagem da midrise e midtread é que ambas são simétricas em relação ao centro e possuem
o tamanho dos intervalos iguais. Uma das desvantagens da midrise é a de não possuir um nível
zero [48].

2.5.2 Quantização com deadzone

A quantização com deadzone é semi-uniforme, onde o nível em torno do zero tem intervalo
maior do que os demais (que terão sempre o mesmo intervalo) [49]. O processo de quantização é
dado por

-? =

0, se |- | < XΔ,
A(- ) d( |- |Δ − Xe, c.c

, (2.25)

enquanto a reconstrução é dada por

-̂ =

0, se -? = 0,
A(-?)Δ( |-? | + X − 0.5), c.c.

. (2.26)

Figura 2.10: Quantização Uniforme com deadzone.

Podemos de�nir X como o tamanho relativo do deadzone em relação ao passo de quantização, a
Figura 2.10 ilustra a quantização com zonas mortas. Um fato interessante é que midrise e midtread
são formas de quantização com deadzone variando o X . Para X = 0.5, temos a quantização midtread
e, para X = 0.0, temos a quantização midrise.

2.5.3 Quantização não Uniforme

Ao contrário da quantização uniforme, a quantização não uniforme tem intervalos com dife-
rentes tamanhos. Para valores maiores teremos passos de quantizações maiores e, para valores me-
nores, teremos passos de quantizações menores [47]. A vantagem da quantização não uniforme
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está em conter intervalos de quantização menores na região que possui maior massa de probabili-
dade, de forma a diminuir a distorção para essa região [50]. Em contrapartida, haverá um aumento
de distorção quando a entrada do quantizador cair nos intervalos mais distantes da origem [50].

As funções logarítmicas podem ser usadas para realizar esse tipo de quantização, pois os passos
perto da origem são menores e, ao se distanciarem, serão maiores. A Fig. 2.11 exempli�ca como a
quantização não uniforme se comporta.

Figura 2.11: Quantização não Uniforme.

2.5.3.1 Quantização Compacta

A quantização compacta (companded quantization) tem como base expandir a região em que as
entradas possuem alta probabilidade de concentração e essas regiões são próximas da origem [50].
Um quantizador compacto mapeia a entrada através de uma função de compressão, esse novo valor
é quantizado e depois reconstruído por uma função de expansão [50]. Mas, se limitarmos a saída
de um quantizador não uniforme por um valor -;0F , esse quantizador também é de�nido como
um quantizador compacto [50].

Duas funções comumente usadas para quantização compactas são a "lei A"e a "lei ;C", uma
vez que essas limitam sua saída para um determinado valor [50]. Neste trabalho, nós utilizamos o
tipo de quantização não uniforme denominada “lei `” [47], [50], [51]. A lei ;C tem o processo
de quantização (ou função de compressão) de�nido pela fórmula 2.27 e a reconstrução (função de
expansão) da lei;C é representada pela Equação 2.28. Nas Equações 2.27 e 2.28, temos que -;0F
é o maior valor possível para a entrada, - um valor de peso a ser quantizado, -? o valor que será
passado ao codi�cador. A variável ;C é a quantidade de canais existentes, a função A(- ) retorna
1 se o - for positivo ou zero e retorna -1 se - for negativo, por �m, -̂ é o valor reconstruído pelo
codi�cador.
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-? = -;0F

log
(
1 + `

|- |
-;0F

)
log(1 + `) A(- ), (2.27)

-̂ =
-;0F

`

[
(1 + `)

(
|- |
-;0F

−1
) ]
A(- ). (2.28)

2.5.3.2 Ponto Flutuante

A representação de números como ponto �utuante [31] também é considerada uma forma de
quantização não uniforme.

O ponto �utuante é a versão (representação) binária da notação cientí�ca e é dividida em três
partes:

• Sinal: um único bit no qual zero representa número positivo e; um, se for negativo.

• Expoente: é o valor adicionado ao atual expoente (4F >=4<B4 − 170A).

• Mantissa: é a parte do valor em notação cientí�ca.

Os pontos �utuantes podem ser divididos em cinco grupos [31]:

• Zero: utilizado para representar o zero, todos os bits da mantissa e expoente são zeros, po-
dendo variar o bit de sinal, existindo a possibilidade de ser +0 ou −0 [31].

• In�nito: tem a função de representar valores in�nitos, é de�nido quando os bits do expoente
são todos 1’s e todos os bits da mantissa são 0’s, já para o sinal o bit pode variar formando:
+�<5 e −�<5 [31].

• Não números: os bits do expoente são todos 1’s e a mantissa terá um valor diferente de 0 [31].

• Números normalizados: utilizam um valor de expoente que varia desde de 1 até o maior
número possível para o expoente menos 1 [31].

• Números não normalizados: possuem um expoente com o valor 0 e a mantissa com um
valor diferente de zero [31].

A quantidade total de bits irá in�uenciar o total de bits usados para expoente e mantissa, além do
valor da constante bias. O valor de sinal sempre será representado por 1 bit, enquanto a quantidade
de mantissa e expoente podem variar, conforme equação abaixo:

A0 40 41 ... 4>−1 ;0 ;1 ... ;?−1. (2.29)

Neste trabalho, o grupo de interesse é o dos números normalizados, os quais possuem a Equação
2.30 para transformar a representação em bits e notação cientí�ca.
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+ 0:=@5:=0B = (−1) A0 24−170A (1 +;). (2.30)

na Tabela 2.5, apresentamos uma síntese para os principais tipos de ponto �utuante.

Tabela 2.5: Síntese dos pontos �utuantes mais conhecidos.

Nome Total de bits
Quantidade de

bits para expoente (p)
Quantidade de

bits para mantissa (q)
Bias

Double 64 11 52 1023
Float 32 8 23 127

Halfprecision 16 5 10 15
Minifloat 8 4 3 3

2.5.4 Entropia

É uma medida do grau de incerteza de uma fonte e é usada aqui para estimar quantos bits um
codi�cador gastaria para codi�car cada peso [47]. A entropia � para amostras independentes é:

� = −
<∑
7=0

>7 log2( >7), (2.31)

onde < é quantidade total de resultados possíveis e >7 é a probabilidade do 7-ésimo resultado pos-
sível.

2.6 DISTRIBUIÇÕES

O conhecimento das distribuições estatísticas de amostras é necessário para analisar os efeitos
da quantização e para projetar o quantizador [51]. A PDF (probability density function, função
densidade de probabilidade) de uma variável aleatória X descreve como a distribuição da variável se
comporta e mostra como os dados são distribuídos. Além disso, é a derivada da função de densidade
cumulativa [52]

2.6.1 Distribuições Populares

2.6.1.1 Gaussiana

A distribuição Gaussiana (ou normal) é uma das distribuições mais comuns usadas e tem seu
formato associado a um sino (vide Figura 2.12) [52]. Sua PDF é de�nida por:
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5F (F) =
1

√
2cf 2

exp−
(F−`)2

2f2 , (2.32)

onde vemos que a PDF depende do desvio padrão (f ) e da média (`) da variável Gaussiana.

Figura 2.12: PDF Gaussiana.

2.6.1.2 Uniforme

Na distribuição uniforme, a variável será distribuída uniformemente, ou seja: 2.33 [52]:

5F (F) =
1

� − � , se � ≤ F ≤ �. (2.33)

A Figura 2.13 ilustra a PDF de uma variável uniforme, sendo constante no intervalo [−�, �] [52].

Figura 2.13: PDF uniforme.

2.6.1.3 Cauchy

A distribuição de Cauchy é muitas vezes comparada com a distribuição Gaussiana. Contudo,
a distribuição de Cauchy possui, em sua PDF, as caudas mais longas e mais planas em relação à
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Gaussiana. A Figura 2.14 ilustra a diferença entre essas distribuições [53]. Sua PDF pode ser descrita
como:

5F (F) =
U
c

(F − `)2 + U2 , (2.34)

onde ` e U são parâmetros.

Figura 2.14: Diferença entre a PDF de Cauchy e Gaussiana.

2.6.1.4 Exponencial

A distribuição exponencial é um caso especial da distribuição chi-square [51], ilustrada pela Fi-
gura 2.15 e descrita por

5F (F) = _4−_(F−`) . (2.35)

Figura 2.15: PDF Exponencial.

2.6.1.5 Gama

A distribuição gama depende de dois parâmetros U (parâmetro de forma) e V (parâmetro de
escala invertida). De acordo com esses dois valores, o comportamento da PDF irá variar (Figura
2.16). A distribuição gama é descrita por [52]:
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5F (F) =
(F − `) U−1

Γ(U)VU 4
− F−`

V , (2.36)

Γ(F) =
∫
F U−14−F 3F = (F − 1)!, (2.37)

onde Γ(U) é a função gama, uma extensão da função fatorial.

Figura 2.16: PDF gama.

2.6.1.6 Laplaciana

A PDF da distribuição Laplaciana é descrita por

5F (F) =
U

2 4
U |F−`|, (2.38)

U é parâmetro de escala e ` representa um parâmetro de localização. A distribuição Laplaciana é
ilustrada na Fig. 2.17.

Figura 2.17: PDF Laplaciana.
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2.6.1.7 Alfa e Logística

Há duas distribuições menos conhecidas que foram usadas em nosso trabalho [53], [54]. A
primeira é a distribuição alfa, de�nida por

5F (F) =
1

F2Φ(U)
√

2c
4−

1
2 (U−

V

F
)2 , (2.39)

sendo que Φ é a função de distribuição cumulativa normal de U, U e V são os parâmetros de forma
e escalabilidade.

A segunda, a distribuição logística, tem sua PDF [53], [55]:

5F (F) =
4−F

(1 + 4−F)2
. (2.40)

Pela Figura 2.18(a) vemos a caracterização da distribuição alfa e, na Figura 2.18(b), o formato da
PDF da distribuição logística.

(a) PDF alfa. (b) PDF logística.

Figura 2.18: PDF das distribuições alfa e logística.

2.7 QUANTIZAÇÃO ESCALAR ÓTIMA PARA VARIÁVEIS ALEATÓRIAS EXPO-
NENCIAIS E LAPLACIANA

O estudo de Sullivan denominado “Optimal entropy constrained scalar quantization for expo-
nential and laplacian random variables” [56] constitui uma das bases teóricas para nosso trabalho.
O autor apresenta a solução do quantizador escalar com restrição de entropia para fontes laplacianas
e exponenciais [56].

Segundo Sullivan. para a fonte com distribuições exponencial, a quantização ótima é alcançada
pela quantização de limiar uniforme (UTQ, uniform threshold quantizer) [56]. Já, para as distri-
buições laplacianas, ele chega à conclusão de que a quantização ótima com restrição de entropia é
a quantização uniforme com uma zona morta (deadzone) em torno do zero [56].
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2.8 SEMELHANÇA ENTRE DISTRIBUIÇÕES

Para analisar a semelhança entre distribuições podemos usar medidas envolvendo a soma de
erros [40], como as métricas mostradas na Seção 2.4.2: RMSE (Eq. 2.8), SSE (Eq. 2.9), MSE
(Eq. 2.10), SAE (Eq. 2.11) e MAE (Eq. 2.12). Outra métrica ainda não citada é a divergência
Kullback-Leibler (� !). Seja % (7) a distribuição de probabilidade de um primeiro modelo, seja
& (7) a probabilidade de distribuição de um segundo modelo, e � ! a métrica que veri�ca a perda
quando a variável& (7) é aproximada por % (7) [57], dada por

� ! (% | |&) =
<∑
7=1
% (7) log % (7)

& (7) . (2.41)

Essa fórmula (Eq. 2.41) mede a semelhança entre duas probabilidades. Um fato importante dessa
métrica é o de não ser simétrica, uma vez que não necessariamente� ! (% | |&) é igual� ! (& | |% ).
Ao analisar seu resultado, percebemos que quanto mais perto � ! é de zero, mais equivalentes
serão essas duas distribuições.

2.9 ARTIGOS CORRELATOS

Na literatura, existem diversos trabalhos sobre compressão de RN’s, no entanto, a maioria en-
volve retreino do modelo ou uma mudança da estrutura do mesmo (por exemplo, inserção ou remo-
ção de camadas) para realizar a compressão. Embora menos abundantes, os trabalhos de compressão
sem retreino são os que mais nos interessam.

2.9.1 Compressão com Retreino

Entre os trabalhos que envolvem retreino, destacam-se os métodos que utilizam pruning [16]–
[19], [58], quantização de camadas [59], compartilhamento de pesos [20] e quantização em geral
[21].

2.9.1.1 Pruning

No trabalho de Han et al. [16], primeiro é realizado um treinamento da rede para descobrir as
conexões importantes, cortando as não importantes. A atividade posterior foi realizar a quantiza-
ção dos pesos, de modo que esses fossem compartilhados com outras camadas. Depois das ativi-
dades de pruning e quantização, a rede é retreinada para a�nação dos pesos. Os autores reduziram
os tamanhos das redes VGG e AlexNet em 49× e 35×, respectivamente, com pequena perda de
acurácia [16].

Dong et al. [58] buscaram desenvolver um método de realizar o corte(pruning) em parâmetros,
embasados nas informações da derivada de segunda ordem da função de erro de cada camada. Os
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autores relatam ser possível chegar a uma taxa de compressão (de�nida por eles como a proporção
dos números de parâmetros preservados em relação aos parâmetros originais) de 11% para AlexNet
sem perdas, após retreinamento. Para VGG, há uma taxa de redução de pesos de 7.5% ocasionando
uma perda na acurácia de aproximadamente 0,5% após retreinamento [58].

Li et al. [17], na etapa de treinamento, usam a medida do segundo momento no otimizador de
Adam [60] para avaliar a relevância de cada peso na rede. Em seguida, com cada peso com sua im-
portância realizam um corte baseado em limiar calculado automaticamente. Os resultados obtidos
são: um corte de 12,5% dos pesos para AlexNet com menos de 1% de prejuízo à acurácia [17].

Zhao et al. [18] desenvolveram duas funções de lógica nebulosa (fuzzy), uma para a "impor-
tância"e a outra para “não-importância” dos pesos. Os pesos importantes são retreinados, os “não
importantes” são cortados, através de um algoritmo denominado U-cut com U aumentado progres-
sivamente. Esse método consegue reduzir o tamanho de armazenamento da rede VGG-16 em 73% e
VGG-19 em 77%, com resultados similares ao original [18]. Por �m, Serra et al. [19] desenvolveram
um algoritmo chamado de Lossless Expressiveness Optimization que encontra as camadas e unidades
da RN que podem ser removidas após reparametrização [19].

2.9.1.2 Quantização em camadas

Na quantização feita separadamente para cada camada, um trabalho relevante é o de Zhu et
al. [59], que visa realizar a quantização da rede com diferentes larguras de bits associados para di-
ferentes camadas. Nesse caso, cada camada terá sua quantização uniforme acoplada à estrutura da
rede e, por esse motivo, participam do treinamento da rede. Os resultados mostram uma queda
maior que 10% da acurácia tanto Top 5 e Top 1 para a rede AlexNet com uma taxa de compressão
10,2× [59].

2.9.1.3 Compartilhamento de pesos

Kim et al. [20] propõem dois modos de realizar a compressão: pruning e compartilhamento
de peso da RN LeNet. As etapas desse trabalho são: remover os pesos “pequenos”; retreinar a
rede; agrupar os pesos com valores representativos; retreinar a rede, novamente. Ao �nal, na rede
LeNet conseguiram reduzir a quantidade de parâmetros de 430500 para 32, preservando a acurácia
original (0,01% de diferença) [20].

2.9.1.4 Quantização geral

Outra forma de comprimir RN’s é quantizando os pesos durante o treinamento da rede, apro-
ximando esses pesos para um limitado codebook de entrada. Esse é o principal ponto do trabalho
de Faraone et al. [21]. Em seus resultados, a RN AlexNet obteve detrimento de até 1% no funcio-
namento da rede, a VGG com a acurácia (tanto Top 1 e Top 5) piorando aproximadamente 1% e a
ResNet [61], com prejuízo de um pouco mais de 1% [21].
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2.9.2 Compressão sem Retreino

Os artigos que envolvem retreino se diferenciam do presente trabalho, uma vez que esse procura
não usar retreino, o que demandaria mais recursos computacionais e mais tempo. Nesse contexto,
o método de compressão sem retreino é mais relevante. Das pesquisas de compressão sem retreino
podemos destacar três métodos diferentes: compressão com agrupamento [62], compressão com
compartilhamento de pesos [63] e, também, quantização escalar [64].

Seo e Kim usam um método híbrido com compressão uniforme seguido de agrupamento por
 -means para comprimir a rede AlexNet. Tanto para acurácia Top 1 e Top 5 conseguem chegar à
quantização com 32 níveis, com uma perda de 0,5% para ambas métricas (0221 e 0225) [62].

Dupuis et al. [63] empregam compressão por compartilhamento de pesos entre as camadas com
a necessidade de realizar o agrupamento para cada camada da rede. Vale ressaltar que os autores
usam modelos no formato ONNX. No �nal, conseguem chegar a uma taxa de compressão (de-
�nida como a proporção entre o tamanho do modelo original e uma aproximação do que seria o
tamanho do modelo desenvolvido) por volta de 5×, com uma perda de menos de 1% na acurácia
Top 1 para as redes ResNet e Squeezenet [63]. A pesquisa de Dupuis et al. não veri�ca a métrica Top
5 para seus resultados.

Em Haase et al. [64], por sua vez, os parâmetros passam por uma quantização escalar depen-
dente ou quantização trellis-coded. Depois da quantização, Haase et al., explicam como é feita a
codi�cação entrópica, fundamentada no codi�cador DeepCABAC. Nos experimentos, foram usa-
das as redes VGG, ResNet, MobileNet (classi�cação de imagem), DCase (classi�cação de aúdio) e
UC12B (autoenconder de imagem). Nessas redes, os autores obtiveram uma taxa de compressão
� = 0, 118, sendo � =

'�
'$

, onde '� é um número de bits comprimidos e '$ o número de bits
não comprimidos, contudo, as redes tiveram um prejuízo no desempenho, em média, de 0,37% na
acurácia [64].

A pesquisa em andamento difere da literatura acima apresentada nos seguintes aspectos: realiza
um estudo maior sobre os pesos e sua distribuição, compara diferentes métodos de quantização,
utiliza maior número de redes. Por outro lado, assemelha-se a Dupuis [63] ao usar modelos RN no
formato ONNX.

2.9.3 MPEG-NNR

Sobre a compressão de redes neurais, encontramos a chamada do MPEG para compressão de
redes neurais, tal iniciativa tem o nome de MPEG–NNR [65]. O objetivo do NNR é de�nir uma
representação comprimida, interpretável e interoperável para redes neurais treinadas [65]. Para
alcançá-lo, a nova representação deve ser capaz de retratar diferentes tipos de redes neurais (LSTM -
memória de curto e longo prazo, CNN – redes neurais convolucionais, RNN – redes neurais recor-
rentes e outras) [65]. Deve, também, possibilitar incrementar redes neurais e modi�cá-las, ensejar
a escalabilidade dos modelos, ser possível inferir a rede comprimida e, também, possibilitar o uso
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com recursos limitados dessas redes [65].

Os formatos de intercâmbio como ONNX (seção 2.3) e NNEF (Neural Network Exchange For-
mat) são recomendados pelo MPEG-NNR para realizar uma representação comprimida de redes
neurais [65]. Em seguida, o documento do MPEG-NNR mostra vários usos e a visão geral dos
requisitos para cada um.

Em março de 2019, houve uma chamada de proposta com os seguintes requisitos [65]: repre-
sentação e�ciente do modelo (O tamanho do modelo comprimido tem que ser pelo menos 30%
menor do que o modelo original); suportar diferentes tipos de redes neurais (CNN, RNN e ou-
tros); a representação comprimida contendo todos os parâmetros e pesos da rede neural; realizar a
inferência do modelo comprimido; o método para comprimir a rede neural independente do con-
junto de dados usado para treinar o modelo original; baixo poder computacional e consumo de
memória da realizar a decodi�cação [65].
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3 QUANTIZAÇÃO DE PESOS

Esse trabalho busca estabelecer um método, sem utilizar retreinamento, para realizar a compres-
são dos pesos (a partir desse momento pesos podem referenciar tanto aos pesos como aos vieses)
das RN’s, de forma que não implique em uma degradação do funcionamento da mesma. Assim,
procura-se diminuir as taxas (quantidade de representações) sem perda expressiva de precisão na
saída da RN. Os pesos no formato ONNX são representados, geralmente, por floats que possuem
32 bits. Essa quantidade de bits permite um total de mais de quatro bilhões de representações.
Baseando-se em técnicas de quantização, visa-se diminuir as quantidades de representações que são
necessárias para constituir os pesos de um modelo. Um caso comum de compressão é a feita em
imagens que utilizam a quantização como forma de diminuir os níveis utilizados.

Ainda serão exploradas as diferentes formas utilizadas para comprimir as RN’s, em especial, os
pesos e vieses presentes nas RN’s. O método da pesquisa consiste em duas grandes etapas, apresen-
tadas na Figura 3.1:

Figura 3.1: Visão geral das principais etapas do trabalho.

• Comparação entre distribuições: a distribuição do modelo é contraposta com distribuições
conhecidas.

• Quantização e resultados: cada peso do modelo passa por diferentes tipos de processo de
quantização com menos níveis. Em seguida, é realizada a comparação entre os resultados que
foram obtidos.

3.1 MODELOS DE REDES NEURAIS

Antes de apresentar a comparação entre a função densidade probabilidade dos pesos dos mode-
los com as distribuições de referência, serão apresentados os modelos de RN’s utilizados em todas
etapas da pesquisa. Os modelos em questão estão todos no formato ONNX [15] e são conhecidos
como arquiteturas de RN populares e são do tipo CNN. A Tabela 3.1 apresenta as informações re-
lativas a esses modelos. Nela, podemos ver o tamanho do arquivo ONNX referente a cada modelo,
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assim como a porcentagem representando o quanto do arquivo é composto por pesos e vieses, bem
como vemos qual é a aplicação daquela RN.

Tabela 3.1: Modelos ONNX e informações básicas.

Modelo
Tamanho do arquivo

(Em MB)

Razão percentual
de pesos e vieses no

arquivo (%)
Tipo

VGG19-bn-7 [36] 548,15 99,997 Classi�cação de imagem
ca�enet [66] 232,57 99,999 Classi�cação de imagem

bvlcalexnet-9 [34] 232,57 99,999 Classi�cação de imagem
rcnn-ilsvrc [67] 220,06 99,999 Classi�cação de imagem

resnet101-v2-7 [61] 170,40 99,930 Classi�cação de imagem
e�cientnet-lite4 [39] 49,54 99,841 Classi�cação de imagem

Densenet [68] 31,2 99,587 Classi�cação de imagem
Lenet [35] 26,72 99,907 Classi�cação de imagem

Age - Lenet [69] 22,85 99,862 Classi�cação de idade
Gender - Lenet [69] 22,83 99,861 Classi�cação de gênero

Mobilenet [33] 13,59 99,366 Classi�cação de imagem
Shu�enet [38] 5,46 99,246 Classi�cação de imagem
Squezenet [37] 4,73 99,713 Classi�cação de imagem

3.2 RELAÇÃO E DEPENDÊNCIAS ENTRE OS PESOS

Uma das formas de veri�carmos qual a melhor maneira de realizar a quantização de dados é
procurarmos se eles possuem algum tipo de padrão e dependência entre si. A alta dependência dos
dados nos indica que a quantização vetorial poderia ser a melhor forma de realizar a quantização.
Essa veri�cação pode ser feita por: correlação, análise espectral dos dados e autocorrelação dos da-
dos.

Na presente pesquisa, para veri�carmos a dependência dos dados temos que veri�car os pesos
e vieses do modelo da rede neural. Porém, para veri�carmos se existe dependência entre os pesos,
há que se estabelecer uma ordem para eles, os pesos são separados em camadas (as quais podemos
ordenar desde a camada de entrada até a camada de saída), mas dentro das camadas não podemos
encontrar uma ordem entre os pesos, a priori. Assim, sem uma ordenação intrínseca entre os pesos e
vieses de uma camada não há razão para procurar correlação entre os pesos. Do mesmo modo, como
não podemos determinar uma sequência entre os pesos, não podemos analisar a autocorrelação e a
análise espectral.

Desse modo, a única forma de veri�carmos qualquer dependência entre os dados de uma rede
neural, sem ordenamento de�nido, é calculando a autocovariância. Porém, para a rede neural sque-
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ezenet (4,73 MB), o total de coe�cientes de autocovariância seria aproximadamente 22,4 MB, tarefa
que exige um grande poder computacional e tempo. Por esse motivo, não foram calculados os co-
e�cientes de autocovariância.

Portanto, como não podemos ter evidências que exista algum tipo de dependência (ou relação)
entre os pesos, não podemos indicar a quantização vetorial para os pesos ou a transformação dos
dados. Por isso, optamos pelo uso da quantização escalar.

3.3 COMPARAÇÃO DA FUNÇÃO DENSIDADE DE PROBABILIDADE

Após analisarmos os modelos usados e percebermos que a maioria do arquivo ONNX é for-
mado por pesos dos modelos de IA, passamos para a etapa em que buscamos caracterizar a distri-
buição de amplitude. Essa fase é fundamental, uma vez que podemos nos valer das distribuições
conhecidas para utilizar métodos de quantização e�cientes para determinadas distribuições. Além,
podemos usar outras informações que se tornam visíveis ao analisar uma distribuição (se os dados
se concentram mais perto do centro, se tem comportamento simétrico, por exemplo). O �uxo desse
estágio é apresentado na Figura 3.2.

Figura 3.2: Passos para a comparação da PDF com distribuições conhecidas.

3.3.1 PDF dos pesos

Para estimar a PDF dos pesos utilizamos um simples histograma. Comparamos a estimação com
um número de funções de distribuições populares como: exponencial (2.6.1.4), uniforme (2.6.1.2),
Cauchy (2.6.1.3), Laplace (2.6.1.6), alfa (2.6.1.7), logística (2.6.1.7), gama (2.6.1.5) e Gaussiana
(2.6.1.1). Para quanti�car e medir qual distribuição mais se aproxima da distribuição dos pesos,
recorreu-se a algumas medidas de dispersão, para que possa ser possível medir a semelhança entre
cada distribuição e a do modelo de ML. Para tanto, foram utilizadas a � ! e SSE, explicadas nas
Seções 2.8 e 2.4.2.1, respectivamente. Com os resultados para cada uma das duas métricas, esses são
ordenadas a �m de que seja possível determinar qual distribuição poderia ser usada para modelar
os pesos de uma RN.
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(d) (e) (f)

(h) (h) (i)

(j) (k) (l)

Figura 3.3: Histograma dos modelos.
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3.4 ANÁLISE DE SIMILARIDADE DE DISTRIBUIÇÕES

Os histogramas são usados para estimar a PDF de cada modelo e são apresentados na Figura 3.3.
A Figura apresenta os dados centralizados na média e o eixo G (Pesos) é limitado onde a maioria dos
dados se concentram. Ao observar os histogramas, percebemos que os pesos, em sua maioria, se
concentram em torno de 0 (para todos os modelos mostrados na Figura 3.3).

3.4.1 Comparação entre as distribuições conhecidas e PDF’s dos modelos

Para cada um desses modelos, houve a comparação da função de densidade de probabilidade
original em busca das distribuições conhecidas com maior semelhança. Para averiguar o resultado
da similaridade foram usadas a SSE (Seção 2.4.2.1) e a � ! (Seção 2.8).

Tabela 3.2: SSE entre distribuições padrões e a distribuição de cada modelo.

Redes 10 dist. semelhante 20 dist. semelhante 30 dist. semelhante
Ca�enet Laplaciana Logística Gaussiana
Alexnet Alfa Laplaciana Logística

Densenet Laplaciana Alfa Gaussiana
efficientnet Laplaciana Logística Gaussiana
GoogLenet Laplaciana Logística Gaussiana

Age - googLenet Logística Laplaciana Cauchy
Gender - googLenet Laplaciana Logística Cauchy

Mobilenet Laplaciana Gaussiana Logística
Rcnn Gaussiana Laplaciana Alfa
Zfnet Laplaciana Logística Gaussiana
Resnet Laplaciana Logística Gaussiana

Shufflenet Cauchy Laplaciana Logística
Squeezenet Logística Laplaciana Gaussiana

VGG Alfa Laplaciana Logística

A Tabela 3.2 sintetiza os resultados das comparações, com o objetivo de mostrar as distribuições
que mais se assemelham à PDF de cada modelo. A coluna 10 dist. semelhante contém a distribui-
ção com o melhor resultado. Já, as colunas 20 dist. semelhante e 30 dist. semelhante referem-se à
segunda e à terceira distribuição mais similar aos pesos do modelo, respectivamente. A distribuição
Laplaciana é a melhor distribuição, de acordo a métrica SSE, para 57,14% e a segunda melhor para
42,86% dos modelos da Tabela 3.2. Em comparação, vemos que a distribuição logística é a melhor
distribuição para dois modelos, a segunda melhor em seis oportunidades e a terceira melhor em 4
oportunidades.

A Tabela 3.3 condensa os resultados para a métrica DKL buscando a primeira, a segunda e ter-
ceira distribuição mais similar à PDF dos pesos, segundo a métrica� !. A Laplaciana, novamente,
possui bons resultados com 42,86% dos casos, sendo a primeira distribuição mais similar (10 dist.
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Tabela 3.3: � ! entre distribuições padrões e a distribuição de cada modelo.

Redes 10 dist. semelhante 20 dist. semelhante 30 dist. semelhante
Ca�enet Gaussiana Laplaciana Cauchy
Alexnet Cauchy Alfa Laplaciana

Densenet Cauchy Laplaciana Alfa
Efficientnet Laplaciana Logística Gaussiana
GoogLenet Laplaciana Logística Gaussiana

Age - googLenet Cauchy Laplaciana Logística
Gender - googLenet Laplaciana Cauchy Logística

Mobilenet Laplaciana Logística Alfa
Rcnn Gaussiana Laplaciana Alfa
Zfnet Alfa Laplaciana Logística
Resnet Laplaciana Logística Gaussiana

Shufflenet Cauchy Laplaciana Logística
Squeezenet Laplaciana Logística Gaussiana

VGG Alfa Laplaciana Logística

semelhante). E, em 50% dos modelos é a segunda distribuição mais similar (20 dist. semelhante).

Com base na informação de que a distribuição de Laplace é uma boa aproximação, conforme as
métricas SSE e � !, podemos utilizar a conclusão de Sullivan. O autor relata que para distribui-
ções Laplacianas, a quantização ótima é aproximada pela quantização uniforme com zonas mortas
(deadzone) [56]. Por isso, neste trabalho nos concentramos em quantização uniforme.

3.5 QUANTIZAÇÃO E COMPARAÇÃO DE RESULTADOS

O resultado de Sullivan diz que para distribuições Laplacianas, a quantização ótima é aproxi-
mada pela quantização uniforme com deadzone [56]. Aliado a essa perspectiva, podemos chegar a
última etapa do trabalho: a quantização dos pesos e a avaliação do seu efeito no funcionamento da
rede. Para isso, realizou-se a comparação entre o resultado da rede quantizada e o resultado esperado
(ground truth). No total, são utilizados cinco métodos de quantização, dando um maior destaque
às quantizações uniformes. Todos os pesos são quantizados e desquantizados antes da avaliação da
rede.

A seguir, apresentam-se os tipos de quantizações usados, a variação dos níveis e do intervalo
(máximo −mínimo) e -;0F para quantização não uniforme lei `.

• Quantização uniforme midrise (Eqs. 2.23 e 2.24), variando os níveis e o intervalo:

– intervalo:

* máximo: 1
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* mínimo: -1

– nível: 27 , 2 ≤ 7 ≤ 24

• Quantização uniforme midtread (Eqs. 2.21 e 2.22), variando os níveis e o intervalo:

– intervalo:

* máximo: 1
* mínimo: -1

– nível: 27 , 2 ≤ 7 ≤ 24

• Quantização não uniforme, baseada na lei `, com as seguintes especi�cações:

– -;0F = 1;

– quantidade de níveis: 27 , 2 ≤ 7 ≤ 24.

• Quantização deadzone, variando o passo de deadzone (X), níveis e o intervalo (máximo −
mínimo), conforme Equações 2.25 e 2.26. A variação de X é descrita na Tabela 3.4.

Tabela 3.4: Quantização deadzone: X e os níveis utilizados.

X Níveis Máximo Mínimo

0.1 27 , 2 ≤ 7 ≤ 24 1 -1
0.25 27 , 2 ≤ 7 ≤ 24 1 -1
0.4 27 , 2 ≤ 7 ≤ 24 1 -1
0.7 27 , 2 ≤ 7 ≤ 24 1 -1

• Quantização minifloat, com o uso da representação IEEE halffloat descrita na Tabela 2.5,
além das representações derivadas a partir da equação que são apresentadas na Tabela 3.5.
As representações que foram derivadas (Tabela 3.5) são pontos �utuantes simpli�cados com-
posto apenas pela parte normalizada. As partes não normalizada, Not a Number, in�nito e
zeros não foram representadas.

A Tabela 3.5 mostra os pontos �utuantes que foram de�nidos para esse trabalho e a quanti-
dade de bits usados para expoente e mantissa.

3.6 DATASET E CONDIÇÕES DE TESTES

Na última etapa da pesquisa, as novas RN’s comprimidas passam pela validação de seus resul-
tados. Neste trabalho, foram utilizados dois dataset’s para avaliar o funcionamento das redes, o
conjunto de dados escolhidos depende do tipo aplicação do modelo. O conjunto de dados do Ima-
geNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012) [43] foi utilizado para os
modelos que classi�cam imagens. Entretanto, o conjunto de dados Adience Benchmark [70] foi
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Tabela 3.5: Representações de pontos �utuantes usadas.

Bits
Bits

Sinal
Bits

Expoente
Bits

Mantissa
Representação

12 1 4 7 A0 40 41 42 43 ;0 ;1 ;2 ;3 ;4 ;5 ;6

10 1 3 6 A0 40 41 42 ;0 ;1 ;2 ;3 ;4 ;5

8 1 3 4 A0 40 41 42 ;0 ;1 ;2 ;3

8 1 4 3 A0 40 41 42 43 ;0 ;1 ;2

7 1 3 3 A0 40 41 42 ;0 ;1 ;2

7 1 2 4 A0 40 41 ;0 ;1 ;2 ;3

6 1 2 3 A0 40 41 ;0 ;1 ;2

6 1 1 4 A0 40 ;0 ;1 ;2 ;3

5 1 2 2 A0 40 41 ;0 ;1

5 1 1 3 A0 40 ;0 ;1 ;2

4 1 1 2 A0 40 ;0 ;1

4 1 0 3 A0 ;0 ;1 ;2

usado tanto para classi�cação de gênero quanto para classi�cação de faixa etária. A Tabela 3.6 sin-
tetiza as informações dos dataset’s e ilustra a quantidade de dados usados.

Tabela 3.6: Informações do tipo de RN’s e o dataset utilizado.

Tipo Saída do Modelo Dataset Quantidade

Classi�cação de Imagem 1000 classes de imagens ILSVRC 2012 [43] 50000
Classi�cação de Gênero Homem ou mulher Adience Benchmark [70] 26580
Classi�cação de Idade 8 faixas etárias Adience Benchmark [70] 26580

Como exposto na Tabela acima, o dataset ILSVRC 2012 é composto por 50000 imagens di-
vidas em 1000 classes, essas variam desde limão até cadeira de balanço, passando por outras 998
classes. A Figura 3.4 mostra alguns exemplos retirados entre as 50000 imagens. Por outro lado, o
Adience Bench possui 26580 fotos, referentes a 2284 pessoas, com a informação acerca do sexo e
faixa etária de cada pessoa. As idades são divididas em:

• idade entre 0 e 2 anos

• idade entre 2 e 4 anos

• idade entre 8 e 13 anos

• idade entre 15 e 20 anos

• idade entre 25 e 32 anos

• idade entre 38 e 43 anos
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• idade entre 48 e 53 anos

• Acima de 60 anos.

A Figura 3.5 apresenta três exemplos retirados do dataset Adience Benchmark.

Figura 3.4: Exemplos de imagens do dataset ILSVRC.

Figura 3.5: Exemplos de imagens do dataset Adience Benchmark.

Com o objetivo de realizar os testes, além de escolher o dataset correto (Tabela 3.6), foram de-
�nidos para cada tipo de RN’s qual das métricas apresentadas na Seção 2.4 devem ser escolhidas,
essas são importantes para medir a qualidade da rede, determinando se houve ou não prejuízo nos
modelos de ML comprimidos.

• Classi�cação de Imagem: Acurácia Top 1 (0221) e Acurácia Top 5 (0225), ver Seção 2.4.4. As
métricas erro Top 1 e Top 5 são exatamente o oposto da acurácia, por isso serão suprimidas.

• Classi�cação de idade: Acurácia (Seção 2.4.1).

• Classi�cação de gênero: Acurácia, recall, precisão e f1-score (Seção 2.4.1).
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3.7 COMPARAÇÕES ENTRE OS RESULTADOS

Para a fase de comparação nem todas as redes citadas na Tabela 3.1 foram usadas, devido à di�-
culdade em realizar a etapa da validação dos modelos Alexnet, Densenet, ZFnet e Rcnn. Entretanto,
as Tabelas 3.7 e 3.8 expõem os modelos que foram usados na comparação de resultados, assim como
exibe a entropia do modelo padrão e os resultados originais das métricas (conforme a Seção 3.6).

Tabela 3.7: Resumo dos modelos de classi�cação de Gênero e Idade.

Modelo Entropia Acurácia Recall Precisão F1-Score

Gender - Googlenet 22,439 82,379 0,921 0,786 0,848
Age - Googlenet 22,459 55,189 - - -

Tabela 3.8: Resumo dos modelos de classi�cação de imagem.

Modelo Entropia Acurácia Top 1 Acurácia Top 5
Squeezenet 20,221 53,77 77,138
Shufflenet 20,391 42,422 68,134

Googlenet (ILSVRC) 22,653 67,774 88,34
Efficientnet 23,513 77,734 93,684

Ca�enet 25,213 56,264 79,522
Mobilenet 21,673 69,3 88,934

Resnet 24,734 77,214 93,614
VGG 25,661 91,816 73,646

Ao averiguar os 10 modelos presentes nas Tabelas 3.7 e 3.8, temos que a média das entropias é
22,896 bits/pesos (bpp). A unidade para veri�car a entropia é bits por pesos ou bpp. Os grá�cos, a
seguir, são de taxa (entropia dos pesos quantizado, em bits/pesos) e distorção (acurácia do modelo
ou outras métricas relacionadas). As legendas das próximas �guras têm o seguinte signi�cado:

• MIDRISE: Corresponde à quantização uniforme com midrise.

• MIDTREAD: Corresponde à quantização uniforme com Midtread.

• NON-UNIFORM: Corresponde à quantização não uniforme, baseado na lei `.

• MINIFLOAT: são as quantizações pelas representações de pontos �utuantes.

Para as �guras que comparam o resultado deadzone, as legendas numéricas correspondem ao X
usado para variar o tamanho da zona central. Nos grá�cos das próximas seções, os valores das mé-
tricas (seja acurácia, f1-score, recall, precisão, acurácia Top1 ou acurácia Top5) serão representados
por uma linha horizontal pontilhada.
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3.7.1 Uniforme × Não Uniforme

(a) (b)

(c) (d)

Figura 3.6: Comparações de taxa e distorção (entropia × acurácia) entre quantização uniforme e não uniforme para
redes de classi�cação de gênero.

Para o modelo de classi�cação de gênero, Gender - Lenet, temos os resultados na Figura 3.6. Ao
analisá-la, podemos perceber que é possível chegar em torno de 2 bits/pesos, com comportamentos
similares para as 4 métricas usadas para Gender - Googlenet. Também, nessa �gura, vemos que os
melhores métodos são minifloat e midtread.
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Figura 3.7: Comparações de taxa e distorção (entropia × acurácia) entre quantização uniforme e não uniforme para
redes de classi�cação de idade.

No modelo Age - Googlenet, novamente, consegue-se chegar em taxas perto de 2 bpp, mantendo
a acurácia próxima ao valor original, conforme a Figura 3.7. Inclusive, nota-se que para os métodos
midtread e minifloat acontece um leve aumento na acurácia ao baixar as taxas, o que não é usual,
embora possível. Ao comparar os métodos, vemos que a midtread e minifloat possuem os melhores
resultados, sendo o comportamento dos dois quantizadores similares.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(k) (m) (n)

(o)
Figura 3.8: Comparações taxa e distorção (entropia × acurácia) entre quantização uniforme e não uniforme para redes
de classi�cação de imagem.
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A Figura 3.8 contém todos os resultados e compara os métodos não uniforme e uniforme dos
modelos que classi�cam imagens.

Ao observar os grá�cos, não se nota um método que se sobressaia para todas as redes. Na Sque-
ezenet, vemos melhores resultados para midtread e midrise (o método minifloat também possui
um bom desempenho), alcança uma entropia menor que 5 bits/pesos, com resultados similares ao
original. Na RN Shufflenet, temos um bom desempenho produzido pela quantização midrise, pois
possibilita uma entropia ao redor de 5 bits, sem prejuízo ao funcionamento da rede. Para GoogLe-
net, os métodos minifloat e midrise têm os melhores resultados e conseguem ter entropia perto de
2 bits, com pouco detrimento das métricas acurácias Top 1 e Top 5. Na Efficientnet e Ca�enet, os
métodos midrise e midtread se destacam. Para a Efficientnet, a taxa alcançada é um pouco maior
que 5 bits/pesos; para a Ca�enet, chega-se à taxa de 2 bpp. A RN VGG tem uma melhor resposta
para o método midtread, embora os 4 métodos possuam resultados similares, conseguindo chegar
a uma entropia por volta de 2 bits/pesos.

Por �m, as duas redes que possuem resultados divergentes das demais são a Mobilenet e a Res-
net. Para a Mobilenet, a curva referente ao quantizador não uniforme é a que apresenta melhor
desempenho, porém as taxas são bem elevadas (em comparação com as demais) sendo maiores que
10 bpp. A Resnet tem a midrise e a não uniforme como os melhores quantizadores e entropia de
aproximadamente 8,5 bits/pesos. Em geral, vemos que os métodos uniformes possuem melhores
resultados para as redes, a exceção das duas últimas citadas.

3.7.2 Deadzone

com o método deadzone, conforme Figura 3.9, é possível chegar a baixas taxas de entropia com
a acurácia em níveis similares. Como descrito na Seção 2.5.2, variando o deadzone podemos im-
plementar todas quantizações uniformes, o valor de X = 0.5 representa o quantizador midtread
e o valor X = 0.0 representa o quantizador midrise. Nos grá�cos 3.9(b) e 3.9(c), em três opor-
tunidades a precisão cresce bastante, e em duas ocasiões, o recall aumenta. Nesses 5 momentos,
enquanto a precisão aumenta, o recall diminui, e vice-versa. Por isso, o uso da métrica f1-score torna
a comparação mais justa e estável.

No modelo para a classi�cação de idade, com o método deadzone, vemos novamente que para
alguns X , a acurácia cresce para entropia em volta de 2 bits/pesos.
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(a) (b)

(c) (d)

Figura 3.9: Comparações de taxa e distorção (entropia × acurácia) entre quantização uniforme e não uniforme para
redes de classi�cação de gênero. O tamanho da deadzone é indicado na legenda.

Figura 3.10: Comparações de taxa e distorção (entropia × acurácia) entre diferentes tamanhos de deadzone para várias
redes de classi�cação de idade. O tamanho da deadzone é indicado na legenda.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(k) (m) (n)

(o)
Figura 3.11: Comparações de taxa e distorção (entropia × acurácia) entre diferentes tamanhos de deadzone para várias
redes de classi�cação de imagem. O tamanho da deadzone é indicado na legenda.
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A Figura 3.11 contém as curvas referentes ao quantizador deadzone comparadas com os melho-
res quantizadores entre não uniforme e uniforme. A rede Squeezenet mostra um resultado similar
para os 4 casos de deadzone e para os quantizadores uniformes (midrise e midtread). Para a Shuf-
�enet, conseguimos ver que deadzone com X = 0.4 tem um melhor desempenho, com taxas aproxi-
madamente 6 bits/pesos. A RN Googlenet mostra os comportamentos dos 6 quantizadores muito
próximos uns aos outros, resultando em entropia um pouco maior que 2 bpp. A efficientnet, como
a Googlenet, mantêm bons resultados para todos os quantizadores deadzone, conseguindo chegar a
taxas de um pouco mais de 6 bpp. Os grá�cos da Ca�enet expõem um resultado melhor (um pouco)
para a midtread, para entropia de 2 bits. A VGG possui um resultado melhor para deadzone com
X = 0.7, os níveis entrópicos chegam perto de 2 bpp.

Para a rede Mobilenet, o quantizador não uniforme havia se destacado na comparação com os
uniformes. Ao confrontar com os métodos de deadzone, vemos que deadzone com X = 0.7 tem
um bom desempenho chegando a competir com o método não uniforme. Embora se aproximem,
ainda é possível veri�car um melhor desempenho para a quantização não uniforme.

As curvas referentes ao quantizador deadzone (X = 0, 1, X = 0, 25 e X = 0, 7) para a Resnet
possuem um resultado similar com a midrise (X = 0.0) e com a não uniforme. O método com
deadzone mostra um desempenho um pouco melhor que a midrise (X = 0.0) e a não uniforme;
para esse método, a entropia é um pouco inferior 7 bpp.

3.7.3 Síntese dos resultados

As Tabelas 3.9 e 3.10 sintetizam os resultados para os 10 modelos. Nelas são mostrados o melhor
método (uniforme, não uniforme ou deadzone) e o nível que pode ser atingido. Ademais, aparecem
informações sobre o desempenho atingido para as métricas e a diferença para o modelo base. A
última coluna é a taxa de compressão (CR, compression rate), calculada assumindo um codi�cador
entrópico perfeito e os pesos possuem 32 bits:

�' =
32
�
, (3.1)

podemos calcular a redução de espaço pela fórmula:

'� =
32 − �

32 (3.2)

Pela análise da Tabela 3.10, constatamos que a quantização deadzone possui o melhor resultado
para quase todas as redes, a exceção da Mobilenet (melhor resultado pela não uniforme). Entretanto,
essa teve um resultado satisfatório alcançado pela deadzone X = 0.7, com um prejuízo máximo de
1% para a 0221 e sua entropia reduzida para 11,9 bpp (diminuindo 0,5 bpp em relação ao método
apresentado na Tabela 3.10).

Trabalhos encontrados na literatura não são usados para essa quantidade de modelos, geral-
mente, se restringem a dois. Ao analisar os estudos que usam retreino, vemos para os métodos que
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Tabela 3.9: Resumo dos melhores resultados da rede em classi�cação de Idade e Gênero.

Modelo
Melhor
Método

Nível
Acurácia
(Dif. %)

Recall
(Dif. %)

Precisão
(Dif. %)

F1-Score
(Dif. %)

Entropia
(Dif.)

CR RE

Gender
Googlenet

Midtread 7
82,918

(-0,538)
0,908

(0,014)
0,8

(-0,017)
0,735

(0,001)
1,351

(22,439)
23,7 0,957

Age
Googlenet

Deadzone
(X = 0, 4)

6
55,802
(-0,613)

- - -
0,96

(21,50)
33,33 0,97

Tabela 3.10: Resumo dos melhores resultados da rede.

Modelo
Melhor
Método

Nível
Acc. Top 1

(Diferença %)
Acc. Top 5

(Diferença %)
Entropia

(Diferença)
CR RE

Squeezenet Midtread 8
53,2

(0,57)
76,578
(0,56)

4,67
(15,542)

6,85 0,854

Shufflenet Midrise 9
41,77

(0,652)
61,512
(0,626)

6,078
(14,314)

5,26 0,81

Googlenet
Deadzone
(X = 0, 4)

8
67,03

(0,744)
87,938
(0,402)

3,06
(19,594)

10,45 0,904

Efficientnet
Deadzone
(X = 0, 7)

9
77,194
(0,54)

93,374
(0,74)

6,528
(16,985)

4,9 0.796

Ca�enet Midrise 8
55,5

(0,79)
78,958
(0,564)

1,828
(23,385)

17,5 0,942

Mobilenet Não Uniforme 13
69,03
(0,27)

88,926
(0,018)

12,414
(9,257)

2,58 0,612

Resnet
Deadzone
(X = 0, 7)

13
76,632
(0,582)

93,322
(0,292)

7,736
(16,997)

4,13 0,758

VGG
Deadzone
(X = 0, 7)

9
73,576
(0,07)

91,698
(0,118)

2,653
(23,007)

12,06 0,917
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usam prunning há uma redução da VGG em 49× (redução de espaço de 0,98) [16], um CR de
7,5% [58]. Zhao et al demonstram uma redução de 73% da rede VGG-19. Nesta pesquisa, porém,
chegou-se a uma redução de espaço de 0,917 e uma taxa de compressão de 12,06. Assim, conclui-
se que é um pouco pior que o estudo de Han et al [18] e melhor em comparação aos estudos de
Han [16] e Dong [58]. Em confronto a pesquisa de Faraone et al [21] que usa quantização geral
com retreino, conseguiu-se melhorar a taxa mantendo a acurácia Top1 e acurácia Top5 com prejuí-
zos menores que 1%.

Acerca dos trabalhos que não envolvem retreino, podemos mencionar Dupuis et al que conse-
guem reduzir em 5× o montante de dados (0,8 de economia de espaço) para as modelos Squeezenet
e Resnet [63] (com perda de no máximo 1% para acurácia Top1). Do nosso lado, conseguiu-se uma
economia de 0,854 e 0,758 para Squeezenet e Resnet, respectivamente. Portanto, mantiveram-se re-
sultados similares com uma perda menor (0,582% no máximo) que a relatada por Dupuis et al [63].

3.8 RETREINAMENTO

Depois de realizar a compressão para todos os métodos, escolheu-se a rede Squeezenet e a ver-
são quantizada por deadzone, com X igual 0,4 e 9 bits de níveis. A RN comprimida selecionada
tinha uma pequena degradação em seu funcionamento: 0,098% para 0221 e 0,158% para Top 5, a
entropia, por sua vez, estava em 5,688 bits/pesos.

No retreinamento, utilizamos um dataset menor, composto por cerca de 34000 imagens [71].
Por sua vez, nos treinamentos usamos 150 e 300 épocas. Para realizar a validação durante o treina-
mento a quantidade total do conjunto dados foi dividido em 80% para treinar e 20% para validação.
Após o retreinamento, a rede teve seu desempenho medido na etapa de validação de 50000 imagens
(igual ao que ocorreu com demais métodos). Ao terminar a validação, pode-se constatar que a rede
teve uma piora em seu funcionamento em relação ao modelo usado para retreinar (tanto para 150
quanto para 300 épocas) e a entropia voltou a níveis elevados, perto das taxas da RN original.

Em outra tentativa, utilizamos um número menor de imagens: 17000 imagens ao invés de
34000. Novamente, os resultados não foram bons. Porém, o retreinamento com 34000 imagens,
obteve-se um desempenho melhor em relação ao anterior, com 17000. Provavelmente, o que ex-
plica o resultado ruim para o retreinamento é a quantidade de imagens usadas. As redes ILSVRC
(que é o caso da Squeezenet) são treinadas originalmente por 1,28 milhões de imagens, portanto,
para se ter um melhor desempenho no retreinamento, deve-se recorrer a um número similar ao
usado para treiná-la originalmente.
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4 CONCLUSÕES

Com o objetivo de realizar a compressão de RN’s sem retreinamento no formato ONNX, um
método para realizar a compressão dos pesos de uma RN foi apresentado. Foram estudados mé-
todos de quantização para a codi�cação de RN’s. Em que as distribuições dos pesos mostraram-se
similares à distribuição Laplaciana.

Para analisar o melhor método de quantização, foi realizada a comparação entre as quantizações
uniforme, não uniforme e deadzone. Entre as 10 redes usadas na etapa de validação, somente a Mo-
bilenet não possui a melhor performance alcançada pelo método deadzone (o modo de quantização
não uniforme obteve o melhor resultado). Nessa rede o método de deadzone com X = 0.7 teve o
segundo melhor resultado. Para as demais redes, sempre obtivemos um melhor resultado pelos
métodos de deadzone (lembrando que midrise e midtread são casos de quantização deadzone).

Em relação à compressão do modelo de classi�cação de gênero, conseguiu-se uma diminuição
de 22 bits de entropia, com um prejuízo de 0,54% na acurácia. Para a rede classi�cação de idade,
o funcionamento melhorou (acréscimo de 0,6% na acurácia) com a redução de 21 bits de taxa.
Entretanto, para os oito modelos de classi�cação de imagem, tanto para acc. Top1, quanto para
acc. Top5, alcançou-se um detrimento máximo de 0,8%. Originalmente, obteve-se uma média de
entropia de 23 bits/peso. Mas, após a escolha da melhor compressão conseguiu-se uma média de
5,62 bits/peso. Quando considerado os 10 modelos, a entropia média vai de 22,896 bits/peso para
4,73. Por sua vez, a taxa de compressão ótima para os modelos de classi�cação de imagem foi no
mínimo de 2,58 (Mobilenet) e no máximo de 17,5 (Ca�enet), na média obteve-se aproximadamente
8. Para o modelo Gender – Googlenet, a CR alcançada foi de 23,7 e a CR para Age Googlenet é de
33,33.

Quanto às limitações deste trabalho, uma delas reside em não poder realizar o retreinamento
da rede. Tal restrição ocorre devido ao alto poder computacional necessário para a execução do re-
treino. Muitas vezes, esse poder computacional não é encontrado em equipamentos como celulares,
dispositivos IoT’s e sistemas embarcados. Outro ponto negativo do retreinamento é a necessidade
de conhecimento prévio do modelo, uma vez que a etapa de treinamento exige o conhecimento do
dataset para ser usado. Nós também nos limitamos em utilizar modelos no formato ONNX, uma
vez que ele é utilizado por vários arcabouços de DL e ML, permitindo a interoperabilidade.

Em suma, constata-se que nosso método é e�caz para dar guias para a codi�cação dos pesos
em um formato de intercâmbio como o ONNX e realizar a compressão das RN’s sem necessitar o
retreino. A compressão sem retreinamento mostra-se vantajosa quando se veri�ca o tempo neces-
sário para compressão com retreinamento, geralmente, muito maior que o tempo necessário pela
quantização dos pesos. Entretanto, os resultados alcançados por esse trabalho são similares aos en-
contrados na literatura, com um grande diferencial de realizar a compressão para 10 modelos. Além
disso, o método apresenta-se apto para ser usado em diferentes redes e até mesmo para modelos com
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diversas funcionalidades. Cabe salientar que o método proposto consegue atingir os objetivos pro-
postos no MPEG-NRR [65] e alcança os requisitos, expostos na seção 2.9.3, que são necessários na
proposta do MPEG-NNR.

Para trabalhos futuros, sugere-se realizar a comparação para mais RN’s, como as 4 redes que
não foram usadas na etapa de validação. Outras redes com �nalidades diversas (manipulação de
imagem, autoencoder, compreensão de máquinas, entre outros) podem passar pelo método exposto
neste trabalho. Embora não seja o foco da pesquisa, não há restrição para combinação do método
escolhido com outros. Ainda, é possível combiná-lo com os métodos de prunning [16], [17], [58]
ou outro método de compressão com retreinamento (citados na Seção 2.9.1). De outro lado, como
trabalhos futuros, para os modelos de classi�cação de imagem ILSVRC, indica-se usar as métricas
de ordenamento (Seção 2.4.3) MRR (Seção 2.4.3.2) para ser utilizada como métrica (além de 0221
e 0225), calculando a posição média em que o elemento ground truth é encontrado na saída do
modelo.
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