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RESUMO

O aprendizado de mdquinas e o aprendizado profundo sio utilizados para a resolugio de diver-
sos problemas, em diferentes dreas de atuagdo. Esse fato impulsiona o desenvolvimento de redes
neurais, além de estimular o crescimento do tamanho destas. Este estudo propée um método para
reduzir o tamanho de redes neurais sem retreind-las, relacionando a entropia dos pesos dos mode-
los e a acuricia dos modelos. Parte deste estudo foi dedicado a distribuigio dos pesos, procurando
semelhangas entre elas e as distribui¢oes conhecidas. Com intuito de reduzir o tamanho da rede foi
realizada a compressio do modelo por meio de vdrios tipos de quantiza¢do. Ao final deste estudo,
indica-se que ¢ possivel diminuir o tamanho da rede em 8 vezes, com um prejuizo nio maior que
0,8% para as métricas de acurdcia, além de mostrar que quantiza¢io com deadzone possui um bom
resultado para as redes testadas. E assim, a quantizagio e a codifica¢io recomendadas podem ser

incorporadas a um formato de distribui¢do de redes neurais.

ABSTRACT

Machine learning and deep learning are used to solve different problems in different areas of exper-
tise. This fact drives the development of neural networks, in addition to stimulating the growth of
their size. This study proposes a method to reduce the size of neural networks without retraining
them, relating the entropy of the weights of the models and the accuracy of the models. Part of this
study is about the distribution of weights, their similarities, and specific distributions. We studied
various types of quantization in the compression of neural networks. This study indicates that it is
possible to reduce the size of the network by 8 times, with a maximum loss of 0.8% for the accuracy
metrics. The recommended quantization and encoding may be incorporated into a format for the
deployment of neural networks.
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1 INTRODUCAO

1.1 CONTEXTUALIZACAO

O uso de Machine Learning (aprendizado de maquinas, ML) para resolu¢io de problemas nas
mais variadas 4dreas ¢ cada vez mais frequente e aplicdvel em diferentes contextos, sendo capaz de
responder a desafios reais [1]. Entre suas aplicagdes podemos destacar desde as mais simples como
verificar se um e-mail ¢ ou nio spam [2], o reconhecimento de letras em cartas [1], além de ques-
toes mais personalizadas, como quais situagdes e elementos podem afetar a retengdo de alunos em
uma determinada universidade [3]. Além disso, ML pode ser usado em problemas mais comple-
xos como: detecgdo de derramamento de 6leo pelas imagens de radar [4], dire¢do segura em carros

auténomos [5] e detec¢io de fraudes financeiras [6].

Assim, do mesmo modo que modelos de ML, também as redes neurais (RN’s) que sdo modelos
computacionais inspirados (que buscam imitar) o funcionamento neural humano. Atualmente as
RN’s ganham espago em diversas dreas mais robustas. Nesse contexto, surge a necessidade de desen-
volver modelos maiores que demandam de mais espago de armazenamento e maior processamento

computacional.

Outro aspecto que ganha notoriedade nos dias atuais ¢ a Internet of Things (internet das coi-
sas, JoT) que pode ser entendido como a interconexio de objetos do dia a dia pela inzernet. A drea
de internet das coisas tem promovido desenvolvimento répido de virias dispositivos e aplicagoes,
como o uso de aprendizado de mdquina em dispositivos de sistema de compartilhamento de bici-
cletas [7] e o uso de equipamentos IoT para cuidados de satde [8]. Atrelada a essa defini¢do, existe
o campo edge computing, que pode ser entendido como equipamento IoT que tem a capacidade
de processar dados perto de sua origem [9]. Um bom exemplo é IoT industrial que realiza a incor-
poragio da inteligéncia artificial (IA) com a finalidade de encontrar novos zzsights industriais [10].
Essa vinculagdo se estende para as demais dreas de IoT. Com isso, o uso de IA com edge computing
também tem se desenvolvido [10].

Os equipamentos de IoT possuem recursos e energia limitados [11], [12]. Normalmente, os
modelos de IA precisam ser compactados e reduzidos para aplicativos IoT e edge computing. As-
sim, as tarefas de IA podem sobrecarregar os dispositivos de IoT e edge computing, pois estes tém
pouco poder computacional e baixa capacidade de armazenamento de dados [12]. Outro tipo de
equipamento que entra nessa lista so os celulares, uma vez que possuem recursos e energia restritos
tornando importante a compressio dos modelos de ML [11].

Em consonéncia com o tema de ML surge um relevante questionamento sobre a interoperabi-
lidade dos modelos de ML, devido a existéncia de vdrios arcabougos de ML e, em especial, de deep
learning (aprendizado profundo, DL), como Pytorch [13], Tensorflow [14], sendo que diversos ar-
cabougos nio possuem integrag¢io entre si. Diante disso, surge a preocupagio em nio se prender a



um framework especifico e suas ferramentas. Com a finalidade de preencher essa lacuna, o formato
ONNX (Open Neural Network eXchange) [15] foi desenvolvido com o objetivo de proporcionar a
interoperabilidade de modelos de ML e de DL.

1.2 MOTIVACAO

O aumento do desenvolvimento de modelos de RN’s decorre, principalmente, da ampliagio
do seu uso para os mais diversos problemas. Com o desenvolvimento da drea em rdpido progresso,
os tamanhos desses modelos também costumam ficar maiores, uma vez que a tendéncia é que os

modelos sejam cada vez mais especializados e sofisticados.

Em contraposi¢io ao cendrio do aumento desses modelos, temos o uso de ML nos dispositivos
citados no pardgrafo anterior (celulares, equipamentos IoT), em que pese esses dispositivos terem
seus recursos e espago limitados. Assim, hd uma preocupagio com o tamanho que os modelos

podem ocupar nos equipamentos e do poder computacional exigido.

1.3 DEFINICAO DO PROBLEMA

O padrio aberto ONNX busca sanar as dificuldades na distribui¢io de RN’s, para permitir que
vdrios arcabougos possam trabalhar em conjunto. Os meios para se reduzir o tamanho das RN’s sem
perder muita acurdcia ganham cada vez mais espaco na literatura. A maioria das pesquisas envolvem
técnicas de compressio com retreino de RN oua mudanga da estruturada RN [16]-[21]. Contudo,
esse tipo de compressio de modelos de ML necessita de um grande poder computacional. Por outro

lado, a compressio sem envolver retreino é um campo ainda pouco explorado.

1.4 OBJETIVOS

Os objetivos desse trabalho sio:

1. Analisar a distribui¢do de amplitude dos pesos;

2. Analisar se existe correlagio de algum modo entre os pesos das RN’s;

3. Determinar a melhor forma de quantiza¢io para os pesos e vieses de uma RN;
4. Aumentar a facilidade de distribui¢do de redes neurais;

S. Propor um método de comprimir os pesos e vieses no formato ONNX, sem o uso de re-
treino, de uma RN de forma a reduzir seu tamanho sem perda significativa de acurécia (de

seu funcionamento).



1.5 PUBLICACOES

A pesquisa desenvolvida neste trabalho teve como base a publicagio:

¢ "Codificagio de Redes Neurais sem Retreino", Marcos Vinicius Tonin e Ricardo L. de Quei-
roz. Simpdsio Brasileiro de Telecomunicagoes e Processamento de Sinais, 2021. [22]

1.6 APRESENTACAO DO MANUSCRITO

O Capitulo 2 apresenta alguns trabalhos correlatos a esta pesquisa, além dos conceitos neces-
sdrios para explicar o método proposto. No Capitulo 3, as comparagdes entre as quantiza¢oes de
vdrios tipos sdo expostas, bem como a comparagio das distribuigoes dos pesos dos modelos com

distribui¢des de referéncias. Por fim, conclusdes, trabalhos futuros estio presentes no Capitulo 4.



2 REVISAO BIBLIOGRAFICA

2.1 INTELIGENCIA ARTIFICIAL

Inteligéncia Artificial (IA) é uma ciéncia que tentar fazer coisas que requerem uma inteligéncia
humana [23]. De certa forma, ¢ a tentativa das médquinas reproduzirem comportamentos que sio
essencialmente humanos em suas atividades. Podemos dizer que a IA, como um todo, engloba
outras duas principais subcategorias, como ilustrado na Figura 2.1: Machine Learning (ML) e Deep
Learning (DL) [24].

Inteligéncia Artificial

Aprendizado de Maquinas

Aprendizado Profundo

Figura 2.1: Estrutura da ciéncia IA.

* Machine Learning ¢ um subgrupo de IA que busca automatizar a andlise e tomada de deci-
sio sem supervisio ou interferéncia humana [23]. A maioria dos algoritmos de ML tendem a
melhorar seu funcionamento a partir da experiéncia, podendo mudar seu comportamento e
suas operagdes [23]. Por outro lado, pode ser entendido como a capacidade do computador

aprender sem estar explicitamente programado para isso [24].

* Deep Learning ¢ um ramo de ML que tem a finalidade de imitar o funcionamento neural
humano. Deep Learning também ¢ conhecido por permitir processar um nivel elevado de
dados para encontrar padroes e relagbes que para os humanos nio sio facilmente encontrados
[24]. Podemos abranger os modelos DL em redes neurais que possuam trés ou mais camadas

onde os computadores buscam imitar a forma como os neur6nios funcionam [23].



2.2 REDES NEURAIS

A arquitetura de um modelo DL pode ser considerada uma rede neural (RN), a depender se
a RN tem mais de trés camadas, essa diferenga serd explicada posteriormente, quando definirmos
o que ¢ camada e seus tipos. Uma rede neural artificial ¢ uma técnica que procura simular o me-
canismo de conhecimento em organismos bioldgicos [25]. Podemos descrever o mecanismo bio-
16gico contendo neurdnios que se conectam através de dxions e dendritos, os quais se comunicam
através de sinapses (local onde agem neurotransmissores) [25]. Portanto, as RN’s procuram simu-
lar esse mecanismo do sistema nervoso humano, fazendo um paralelo em que os neurdnios seriam
as unidades computacionais, conectados por pesos e cada entrada de neurdnio é multiplicada por
esse peso. A Figura 2.2 mostra a representagio da RN. Assim, a rede neural artificial computa uma
fungio das entradas propagando as entradas do neurdnio para sua saida, utilizando os pesos como
pardmetros intermedidrios [25]. A partir da Equagio 2.1, temos a defini¢do matemdtica do funci-
onamento de um neurénio de uma RN, as entradas (¢;) tém seus valores multiplicados pelo peso
que as conecta a0 neurdnio ( p;). No neurdnio ocorre a agregagio das entradas multiplicadas pelos

pesos (2.) e a aplicagdo da fun¢io daquele neurénio (f()), produz a saida y.

&

)

Neurénio

Axions

Sinapse

€n

Figura 2.2: Componentes bésicos de uma Rede Neural Artificial.

n

y=F Z ¢ ps (2.1)

z

As redes neurais podem ser definidas como sistemas massivos e paralelos, compostos por uni-
dades de processamento simples que computam determinadas fungdes matemdticas [26]. A partir
de um conjunto de exemplos apresentados, esses sistemas conseguem generalizar o conhecimento

adquirido para um conjunto de dados desconhecidos [27].

Outro fator importante sobre o funcionamento das RN’s ¢ que o ‘conhecimento’ acontece
quando um peso tem seu valor atualizado [25] em decorréncia de atividades que ocorreram. Muitas
vezes, essas atividades sio conhecidas como treinamento em que a RN ¢ alimentada com entradas

sabendo a saida correta. A partir dessas entradas e saidas, a RN ¢ capaz de determinar se a saida



produzida (predi¢do) por ela ¢ a correta ou nio e, com essa informagio, os pesos sio ajustados e

refinados vérias vezes para prover uma predi¢do acurada [25].

2.2.1 Deep Learning e Machine Learning

Os modelos de DL podem ser comparados com modelos cldssicos que sio comumente usados
em ML com alto nivel de abstragio [23], uma vez que a maioria dos elementos bésicos de DL sio
inspirados em algoritmos tradicionais de ML [23]. A vantagem da DL acontece porque podemos
colocar vérias unidades bésicas juntas (separadas em pelo menos 3 camadas), além da aquisigio do
conhecimento por cada peso para diminuir o erro de predi¢io [25].

O ganho de DL em comparagio a um modelo de ML ¢ desencadeado quando estas unidades
computacionais bdsicas sio combinadas e, os pesos dos modelos sio treinados e alterados dina-
micamente [25]. Uma diferenga notdvel entre ML e DL consiste que para os modelos de DL (e,
consequentemente, para RN’s) existe a tendéncia de ter uma maior acurdcia quanto maior for a

quantidade de dados usados, como ilustrado na Figura 2.3 [25].

F 3

Acuracia

Quantidade de Dados

Figura 2.3: Comparagio entre DL e ML, adaptado de [25].

2.2.2 Estrutura Basica

Uma RN pode ser organizada em camadas e nds; e, classificada em camadas simples e redes de
camadas maltiplas.

* Camada simples: composta pela camada de entrada e né de saida (Figura 2.4(a)).

* Camadas multiplas: composta por uma tnica camada de entrada, virias camadas ocultas e

uma de saida (Figura 2.4(b)).

Nas Figuras 2.4(a) e 2.4(b), E faz referéncia as entradas da camada de entrada e p sio os valores



dos pesos.
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(a) Camada simples. (b) Camadas maltiplas.

Figura 2.4: Camadas simples e maltiplas.

Com a defini¢do de camadas, podemos definir que as redes neurais serdo consideradas modelos
deep learning se houver mais de trés camadas. Assim, deve ter em sua composi¢io, além da camada
de entrada e de safda, a0 menos uma camada oculta. Portanto, podemos concluir que uma RN de
camada simples nio ¢ um modelo DL e que uma RN de camada multipla serd um modelo DL.

Vimos, entdo, que existem 3 elementos bdsicos em uma RN: os nds que sdo as unidades com-
putacionais de uma RN; os pesos, as conexdes entre cada né que recebe um valor e; as camadas, um

conjunto de nds que tem a mesma distdncia da entrada.

H4 mais um elemento usado nas RN’s: o viés (b7as, em inglés), esse tem o efeito de aumentar
ou diminuir a entrada de um né (neurénio da rede neural), dependendo de seu valor [28]. O viés
se liga diretamente ao neurdnio como na Figura 2.5. Pela Equagio 2.2 que ¢ derivada da equagio

2.1, vemos que o viés (v) se liga diretamente a0 né.

n

y=Flow S en (22)

z

2.3 OPEN NEURAL NETWORK EXCHANGE

Os modelos de IA muitas vezes tém seu desenvolvimento e inferéncia presos a um arcabougo/-
ferramenta especifica, uma vez que a interoperabilidade com outras ferramentas nio existe. E, com

aintengdo de sanar essa barreira, o Open Neural Network eXchange foi desenvolvido.

O ONNX [15] é um formato para modelos de IA, para DL (tanto CNN quanto RNN) e ML.
Esse formato prové um arquivo de fonte aberto (open source) com o objetivo de ser comum as RN’s
e independentes de arcabougos, por exemplo: Pytorch [13], Keras [29], Tensorflow [14], MxNet
[30].



Figura 2.5: Viés em uma RN.

Para isso, o ONNX funciona definindo um conjunto comum de operadores internos (que po-
dem ser considerados como os blocos que constroem um modelo de IA), os tipos de dados padroes,
além de definir um modelo extensivel de grafos de computagio. Um ponto importante para esse
trabalho ¢ que esse formato representa os pesos e os vieses, majoritariamente, como ponto flutuante
de 32 bits, no padrio IEEE 754 [31] e, por vezes, como ponto flutuante de 64 bits [15].

A atribui¢io mais importante do ONNX € ser uma representagio intermedidria de um modelo
que permite a interoperabilidade de um ambiente para outro, ndo se restringindo a um Gnico fra-
mework, conforme mostra o fluxo da Figura 2.6. Portanto, sustenta a ideia de que embora tenha
sido usado, por exemplo, o Pytorch para criar e treinar uma rede, podemos avalii-la e utilizd-la com,

por exemplo, Tensorflow.

2.3.1 Modelos fornecidos

Além de possibilitar a exportagio de modelos de IA préprios, 0 ONNX prové uma série de
modelos conhecidos de exemplos [15], que sdo divididos em:

* Classificagio de imagem;

* Detecgio e segmentagio de imagem;
* Andlise facial, corporal e gestual;

* Manipulagio de imagem e;

* Compreensio de miquinas.
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Figura 2.6: Ecossistema ONNX, adaptado de [32].

Para este trabalho, os modelos de classificagio de imagens s3o os mais utilizados para teste e va-
lidagdo. Nessa classificagdo temos as redes: MobileNet [33], AlexNet [34], GoogLenet [35], VGG
[36], SqueezeNet [37], Shufflenet [38] e EfficientNet [39]. Essas redes citadas e outras serdo utiliza-
das para o desenvolvimento deste trabalho.

2.4 METRICAS PARA MACHINE LEARNING E DEEP LEARNING

Os modelos de IA (em especial de ML e DL) tém por esséncia trabalhar de forma automatizada,
sem interven¢do humana, por isso para esses modelos é importante verificarmos e validarmos o seu
funcionamento. Outro ponto importante se deve ao fato de que esses modelos fazem atividades
diferentes, seja no seu funcionamento ou na sua utilidade. Os principais tipos de atividades dos
modelos de IA sio:

* Classificagio: esses modelos tem como fungio tentar descobrir padrdes entre os dados e fazer
alguma conclusio sobre eles. Por exemplo, um modelo pode ler um email e classificd-lo em

spam ou nao.

* Regressao: através do estudo e anilise dos dados de entrada, o modelo tenta prever outra in-

formagio. Por exemplo, retornar o valor de um imével, a partir de suas caracteristicas iniciais.
* Ordenamento: esse tipo de modelo buscar ordenar uma lista baseado nos dados de entrada.
Como h4 diferentes tipos de modelos que fazem variadas atividades nio podemos usar uma

métrica universal para tudo, costuma-se utilizar métricas especificas a depender do tipo de atividade
do modelo, por exemplo, para [40]:



* classificagdo: acurdcia, precisio, recall, Fl-score;

* regressio: soma dos erros quadrados (SSE), soma dos erros absolutos (SAE), média dos erros
quadrados (MSE), média dos erros absolutos (MAE);

* geragio de imagem: PSNR (relagio sinal ruido de pico);

* Ordenamento: Mean reciprocal rank (MRR).

Neste trabalho, as métricas que mais nos interessam sio as de classificagio e ordenamento.

2.4.1 Meétricas de Classificacao

A matriz de confusio ¢ importante para entender as métricas relacionadas a classificagdo. Ela de-
talha a classificagdo de cada classe feita pelo modelo e a classificagdo que seria correta [40], portanto
em suas colunas estao dispostos os resultados esperados e nas linhas estdo os resultados preditos pelo
modelo. A Tabela 2.1 considera um exemplo de 100 elementos, divididos em 50 para cada classe. A

Tabela 2.2 traz outro exemplo com 3 classes e 160 elementos.

Tabela 2.1: Tabela confusio para 2 classes.

. Esperada Classe 1 | Classe 2
Predito

Classe 1 40 10

Classe 2 5 45

Tabela 2.2: Tabela confusdo para 3 classes.

Pre ditoEsperada Classe 1 | Classe 2 | Classe 3
Classe 1 40 8 2
Classe 2 5 35 10
Classe 3 7 48

Nas Tabelas 2.1 e 2.2, as colunas representam a saida esperada do modelo e as linhas, por sua

vez, representam o que foi predito pelo modelo.

2.4.1.1 Acuracia

Acuricia ¢ uma medida simples, a razio entre o nimero de predi¢oes corretas e 0 niumero total

de predigoes [40]:

Predi¢oes Corretas (2.3)

acc =

Total Predigoes
Para a Tabela 2.1, a acurdcia é igual 0,85; para a Tabela 2.2, acuricia ¢ 0,7687.

10



2.4.1.2 Acurécia por classe

A acurdcia por classe é uma variagdo da acuricia, mas calculando a média da acurdcia de cada

classe separada.
Z Prediges Corretas por Classe
Total de Predig6es por Classe

Total de Classes

Podemos dizer que a acuricia simples ¢ uma micromédia (Eq. 2.3) e acurdcia por classe, uma macro-

(2.4)

ACCcl 550 =

média (Eq. 2.4) [40]. Na Tabela 2.1, temos o valor igual ao da acuricia simples, mas para a Tabela
2.2, um resultado de 0,7666 seria obtido:

2.4.1.3 Precisao

Pela Equagio 2.5, a precisio ¢ utilizada para indicar a relagio entre predigoes corretas para a
classe X e todas as predi¢des para classe X [40]:

Predi¢des Corretas da Classe X
(2.5)

PreCIsao =l de Predices para Classe X

Para a Tabela 2.1, a precisio da classe A ¢ 0,888; enquanto que para a classe B a precisio ¢ 0,8181.
Na Tabela 2.2, as precisoes sio de 0,8; 0,7 ¢ 0,8 para as classes A, B e C, respectivamente.

2.4.1.4 Recall

O Recall da classe X é a métrica usada para indicar a relagdo entre as predi¢oes corretas da classe

X e total de predi¢oes corretas que foram feitas (Eq. 2.6) [40].
Predi¢des Corretas da Classe X

recall = (2.6)

Total de Predi¢oes Corretas para todas as Classes

Na Tabela 2.1, o recall ¢ 0,8 para a classe A, enquanto que paraa classe B o recall ¢ de 0,9. Na Tabela
2.2, as classes A, B e C possuem um recall de 0,8; 0,7 ¢ 0,8; respectivamente.

2415 F1-score

E uma forma de combinar as métricas recall e precisio, para associd-las usa-se a média harmo-
nica, conforme Equagio 2.7.

precisio X recall

Flscore =2X (27)

precisio + recall’

Os resultados F1 sio:

* Tabela 2.1: 0,842 ¢ 0,857 para as classes A e B, respectivamente.

* Tabela 2.2: 0,8; 0,7 ¢ 0,8 para as classes A, B e C, respectivamente.

11



2.4.2 Meétricas de Regressao

Nas tarefas de regressio, o modelo prediz um valor. Por exemplo, o pre¢o de um produto pode
ser definido com o uso de um modelo de regressao [40]. Logo, as métricas de classificagio nio sio

uma boa escolha, uma vez que essas trabalham com classes fixas.

2.4.2.1 Soma de Erros

Uma das métricas mais comuns ¢ a root mean square error (RMSE, Eq. 2.8), ou ainda, raiz

quadrada do erro médio [40], porém aqui podemos também descrever as métricas SSE (Eq. 2.9),
MSE (Eq. 2.10), SAE (Eq. 2.11) e MAE (Eq. 2.12).

RMSE = \/ Z?ﬂ(y; 2 (2.8)
SSE = i(w =% (2.9)

-1
MSE = Z?ﬂ(y; 5 (2.10)
SAE = iu 5= 51D, (2.11)

7=1
wag = 2= (2.12)

n

Para as Equagdes 2.8, 2.9, 2.10, 2.11 e 2.12, temos que 7 ¢ a quantidade total de pontos, y; ¢
referente a0 7-ésimo elemento da lista y, jd y; é o elemento na posi¢io 7 da segunda lista, y.

2.4.3 Ordenamento

O tipo de tarefa de ordenamento ¢ similar a tarefa de classificagdo, desse modo podemos com-
partilhar algumas métricas como: precisdo, recall e F1 score [40]. Um modelo que pontua uma

série de elementos e os ordena é considerado um tipo de modelo de ordenamento.

2.4.3.1 Ganho Cumulativo Descontado Normalizado

O ganho cumulativo descontado normalizado é, comumente, utilizado para aferir a eficiéncia
dos algoritmos de pesquisa na internet, além de ser usado em outras aplicagdes similares. Para enten-
der o ganho cumulativo descontado normalizado (GCDN) temos que primeiro entender o que ¢
ganho cumulativo (GC). Segundo a Equagio 2.13, temos que GC (de uma lista de resultados de ta-
manho p) é definido como a soma da relevincia de cada item até a posi¢do p [41]. Cada item dessa
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lista de tamanho p tem uma pontuagio de relevincia associada a ela. A pontuagio de relevincia

pode ser dada, por exemplo, através de uma pesquisa feita entre uma populagio.

b4
GCy = Z rel,, (2.13)
=1
onde rel; é a pontuagio de relevincia do resultado da posi¢io 7. A G C, ndo é afetada pela troca de

posi¢io de resultados, assumindo que a troca ¢ de um item com posi¢io menor que p.

Assim, GCDN e sua versio nio normalizada GCD (ganho cumulativo descontado) buscam
explorar o conceito de que os resultados com maior probabilidade sio mais relevantes (os itens
que aparecem no inicio de uma lista ordenada sio os de maior classificagio) [40]. Portanto, essas
métricas (GCDN e GCD) assumem que, em uma lista ordenada, os objetos mais relevantes sio,
também, os mais valiosos [41], [42]. Outro ponto, quanto menor a posi¢ao de um objeto relevante

menos valioso se tornard, uma vez que serd menos provavel de ser examinado [41], [42].

A diferencga entre 0 GCD e GC ocorre quando no ganho cumulativo a troca de posi¢io nio
altera o resultado (dada a restri¢do da troca ser para uma posi¢io menor que p), mas o GCD aplica
descontos em itens mais abaixo da lista decrescente [40], sendo o GCD definido como [41], [42]:

b4 rel;
. (27 —1
GCDy=rel+ Yy rel _ 2 ) (2.14)

2

~ log, logr(1+7)
na Equagio 2.14 em que re/; é a relevincia do primeiro item. A divisio por log, 7 tem a fungio
de penalizar os itens de acordo com sua posi¢io. Por exemplo, o décimo item da lista teria sua

pontuagio de relevincia (re/1o) dividida por log, 10 = 3.322.

O problema da métrica GCD ¢ que ela pode variar de acordo com o tamanho da lista, pois uma
lista maior terd maiores descontos aplicados. Entio a versio normalizada da GCD, conhecida como
GCDN, normaliza o resultado da GCD de forma que a variagio de tamanho da lista ndo implique
em mudangas de resultados. A GCDN divide a GCD pelo score perfeito da GCD, conhecido como
DCG ideal (GCDI) [41], [42], 0 DCG ideal ¢ alcangado quando a lista estd ordenada perfeitamente
pela relevincia de cada item, da maior relevincia para a menor. Assim, podemos definir a GCDN

conforme a Equagio 2.15.

GCD,

CCDN = Gepr

(2.15)

O GC D]\{ﬁ tem seu valor sempre entre 0 e 1.

2.4.3.2 Reciprocal Rank

A medida reczproml rank pode ser utilizada em aplicagbes que possuem apenas um tGnico item

relevante [42]; a MRR, por sua vez, ¢ utilizada para avaliar processos que produzem uma lista de
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possiveis respostas, ordenadas pela probabilidade de importincia [40], sendo mais indicada para
quando hd mais de um resultado relevante.

MRR = 1 ZQ: 1 (2.16)
B Q — posigﬁol.’ '

sendo Q a quantidade total de consultas feitas e posigdo, a colocagio em que o elemento da consulta

foi encontrado.

2.4.4 WMeétricas para Classificacao de Imagem
Para o dataset ILSVRC (ImageNet Large Scale Visual Recognition Challenge [43]) foram pro-
postas métricas de acurdcia e de erro que sio utilizadas para avaliar a classificagdo de imagem.
2.4.41 Erro e Acuracia Top 1

A acurdcia Top 1 (acc;) ocorre quando a saida mais provavel do modelo corresponde a resposta

esperada. J4, o erro (err1) é quando essa saida nio corresponde.

1, SM;=GT,

acep = , (2.17)
0, SM;+GT
1, SM #GT,

err = , (2.18)
0, SM =GT

em que GT ¢ a saida verdadeira (ground truth), e S M é a saida mais provivel do modelo.

2.4.4.2 Erroe Acuracia Top 5

A acurdcia Top 5 (accs) acontece quando uma das cinco saidas mais provéveis do modelo cor-
responde 2 resposta esperada. J4, o erro (er7s), quando as cinco saidas mais provaveis nio corres-
pondem a saida esperada.

b

{1, SMi=GT ouSM,=GT ouSMz=GT ouSMi;=GT ouSMs=GT,
accs =

0, c.c.
(2.19)
1, SMy#GT eSMy+GT eSMs+ GT eSMy#+ GT eSMs # GT,
errs = ,  (2.20)
0, c.c.

SM até S Ms correspondem as S safidas do modelo com maior probabilidade, sendo SA4; a mais
provivel e S s, a quinta mais provével.
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Para elucidar o funcionamento dessa métrica, utilizamos a Figura 2.7 como entrada do modelo e
a Tabela 2.3 para exemplificar uma possivel saida de um modelo a partir da Figura 2.7. Com intuito

de demonstrar o funcionamento foram consideradas 3 cenirios:
* Cendrio 1 - Tiger cat (saida esperada): acuricia Top 1e Top 5 éigualaleerr = errs =0,
pois a T7ger cat é a classe mais provavel do modelo ficticio.

* Cendrio 2 - saida esperada Egyptian cat: na Tabela 2.3, Egyptian cat ¢é a terceira saida mais

provivel, portanto, temos que acc; = 0, accs = 1,além de, errp =leerrs = 0.
* Cenirio 3 - Bengal cat (saida esperada): a saida ndo estd entre as 5 classes mais provéveis,

logo o resultado serd inverso ao do cendrio 1. acc; = aces =0 eerry = errs = 1.

A Tabela 2.4 sintetiza os resultados para as métricas acuricia e erro (Top 1 ¢ Top 5) dos cendrios
apresentados acima.

Figura 2.7: Imagem de exemplo para classificagio de uma RN.

Tabela 2.3: Exemplo de saida de um modelo.

Rank Classe Probabilidade
1 tiger cat 0.432
2 Lynx, catamount 0.281
3 tabby, tabby cat 0.183
4 Egyptian cat 0.0895
5 tiger, Panthera tigris 0.011
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Tabela 2.4: Valores das métricas para diferentes resultados.

Cendrio Saida Esperada Acuricia Topl Erro Topl Acuricia Top5 Erro Top5

tiger cat 1.0 0.0 1.0 0.0
2 Egyptian cat 0.0 1.0 1.0 0.0
3 Bengal cat 0.0 1.0 0.0 1.0

2.5 QUANTIZACAO ESCALAR

A quantizagio escalar ¢ uma etapa importante deste trabalho, apds o entendimento da arquite-
tura das redes neurais, os pesos delas serdo extraidos. Esses pesos, entdo, serdo quantizados e recons-
truidos a partir do valor quantizado. Para entender a quantizagio, ¢ preciso analisar a conversio

analdgico-digital, que pode ser dividida em trés processos basicos [44] como ilustrado na Fig. 2.8.

- Amastragem - Quantizagdo - Codificador -

Sinal Sinal Sinal Sinal
Analégico Discreto Quantizado Digital

\ J
hd

Conversor A/D

Figura 2.8: Fluxo do conversor analégico digital.

* Amostragem: trata da conversio de um sinal continuo para um sinal discreto, obtendo amos-
tras do sinal continuo em um determinado instante [44], tornando o sinal discreto no tempo

amostrado.

* Quantizagio: a conversio de um valor com amplitudes nio estabelecidas em um valor dis-
creto selecionado dentre possiveis finitos valores [44]. O sinal, portanto, ¢ discreto no tempo

e na amplitude.
* Codificador: cada valor quantizado serd representado por uma sequéncia bindria [44].
Em relagio a quantizagio, essa pode ser entendida como a transformagio de um sinal de ampli-

tude continua em um sinal com amplitude discreta [44]. Em resumo, a quantizagio converte do

continuo para o discreto [45].

Ainda, a quantizagio pode ser uniforme, contendo espagamento igual entre cada nivel existente,

sendo o intervalo constante para cada nivel [46], ou ndo uniforme, que tem diferentes espagamentos
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para cada nivel.

2.5.1 AQuantizacao uniforme

Hi4 virias formas de realizar a quantizagio uniforme, as duas mais conhecidas sio as midrise e
midtread [47]. Seja X o valor de um peso a ser quantizado, X, o valor que serd passado ao codifi-
cador, X o valor reconstruido pelo codificador, A o tamanho do passo de quantizagio e o operador
round(X) que arredonda o valor X para o numero inteiro mais préximo. O processo de quanti-

zagio por um quantizador midtread é dado por

X, = round ()A_() , (2.21)

enquanto a reconstrugio ¢ dada por
X = AX,. (2.22)

Por outro lado, a quantizagio midrise (Eq. 2.23) e sua reconstrugio (Eq. 2.24) podem ser defi-

nidas como:

X, = s(X) Fﬂ (2.23)

X =5(X,)A (Xq - %) , (2.24)

onde a fungio s(X), de sinal, retorna 1 se o valor de X for positivo e -1, caso contrdrio, enquanto o
operador [ X ¢ conhecido como ce7/ e retorna o arredondamento superior do valor X. As quan-

tizagdes midrise e midtread sio ilustradas na Figura 2.9, onde o passo de quantizag¢io usado foi
A

5
Midrise Midtread
304 71
3/4A
A2
A2
A4
A4
U'O o
X 520
A4 —A/4
—A2 —A/2
-3A/4 3A/4
-A —A2 0 A2 A —A —A2 0 A2 A
X X
(a) Midrise. (b) Midtread.

Figura 2.9: Quantiza¢io Uniforme: Midrise e Midtread.
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A vantagem da midrise e midtread é que ambas so simétricas em relagdo ao centro e possuem
o tamanho dos intervalos iguais. Uma das desvantagens da midrise ¢ a de ndo possuir um nivel
zero [48].

2.5.2 Quantizacao com deadzone

A quantiza¢io com deadzone é semi-uniforme, onde o nivel em torno do zero tem intervalo

maior do que os demais (que terdo sempre o mesmo intervalo) [49]. O processo de quantizagio ¢

dado por
0, se | X| < dA,
X, = x| , (2.25)
s(O[(F =91, cc
enquanto a reconstrucio ¢ dada por

~ |0, se X, =0,

X = . (2.26)
s(XP)A(1X, | + 0-0.5), cc
Deadzone A
—
A

3A —~—

24 Y

A A+3-05
520

-A

~A
2 A
A
38
4A 3A —2A <A 0 A 2A 3A 4A
X

Figura 2.10: Quantiza¢io Uniforme com deadzone.

Podemos definir § como o tamanho relativo do deadzone em relagio ao passo de quantizagio, a
Figura 2.10 ilustra a quantizagio com zonas mortas. Um fato interessante é que midrise e midtread
sio formas de quantizagio com deadzone variando o d. Para 0 = 0.5, temos a quantizagio midtread

e, para d = 0.0, temos a quantizagio midrise.

2.5.3 Quantizacao nao Uniforme

Ao contrdrio da quantizagdo uniforme, a quantiza¢io nio uniforme tem intervalos com dife-
rentes tamanhos. Para valores maiores teremos passos de quantizagdes maiores e, para valores me-

nores, teremos passos de quantiza¢des menores [47]. A vantagem da quantiza¢io nio uniforme
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estd em conter intervalos de quantizagio menores na regido que possui maior massa de probabili-
dade, de forma a diminuir a distor¢io para essa regido [S0]. Em contrapartida, haverd um aumento
de distorgio quando a entrada do quantizador cair nos intervalos mais distantes da origem [50].

As fungoes logaritmicas podem ser usadas para realizar esse tipo de quantizagio, pois os passos
perto da origem sio menores e, ao se distanciarem, serdo maiores. A Fig. 2.11 exemplifica como a

quantiza¢ao nao uniforme se comporta.

A Nio Uniforme
0.5A
N
0.5M
-A
-A -0.5A 0 0.5A A
X

Figura 2.11: Quantizagio nio Uniforme.

2.5.3.1 Quantizacdo Compacta

A quantizagio compacta (companded quantization) tem como base expandir a regiio em que as
entradas possuem alta probabilidade de concentragio e essas regides sio préximas da origem [S0].
Um quantizador compacto mapeia a entrada através de uma fungio de compressio, esse novo valor
¢ quantizado e depois reconstruido por uma fung¢io de expansio [50]. Mas, se limitarmos a saida
de um quantizador nio uniforme por um valor X, esse quantizador também ¢ definido como
um quantizador compacto [50].

Duas fungdes comumente usadas para quantizagdo compactas sio a "lei A"e a "lei m#", uma
vez que essas limitam sua saida para um determinado valor [50]. Neste trabalho, nés utilizamos o
tipo de quantizagio nio uniforme denominada “lei p” [47], [50], [51]. A lei mu tem o processo
de quantizagio (ou fung¢io de compressio) definido pela férmula 2.27 e a reconstrugio (fungio de
expansio) da lei mu é representada pela Equagio 2.28. Nas Equagoes 2.27 e 2.28, temos que X;y,,x
¢ o maior valor possivel para a entrada, X um valor de peso a ser quantizado, X, o valor que serd
passado ao codificador. A varidvel mu é a quantidade de canais existentes, a fun¢io s(X) retorna
1 se 0 X for positivo ou zero e retorna -1 se X for negativo, por fim, X ¢ o valor reconstruido pelo
codificador.
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log (1 + #%)

X, = Xopar g7 5(X), (2.27)
X = X’;“ 1+ #)(%‘1)] 5(X). (2.28)

2.5.3.2 Ponto Flutuante

A representagio de nimeros como ponto flutuante [31] também ¢é considerada uma forma de

quantiza¢ao nao uniforme.

O ponto flutuante ¢ a versio (representagio) bindria da notagio cientifica e ¢ dividida em trés
partes:

* Sinal: um tnico bit no qual zero representa niumero positivo e; um, se for negativo.
* Expoente: ¢ o valor adicionado ao atual expoente (ex poente — bias).

* Mantissa: ¢ a parte do valor em notagio cientifica.

Os pontos flutuantes podem ser divididos em cinco grupos [31]:

Zero: utilizado para representar o zero, todos os bits da mantissa e expoente sio zeros, po-
dendo variar o bit de sinal, existindo a possibilidade de ser +0 ou —0 [31].

Infinito: tem a fungio de representar valores infinitos, é definido quando os bits do expoente

sio todos 1’s e todos os bits da mantissa sio 0’s, jd para o sinal o bit pode variar formando:

+Inf e —Inf [31].
* Nio nimeros: os bits do expoente sio todos 1’s e a mantissa terd um valor diferente de 0 [31].

* Ndmeros normalizados: utilizam um valor de expoente que varia desde de 1 até o maior

ndmero possivel para o expoente menos 1 [31].
* Numeros nio normalizados: possuem um expoente com o valor 0 e a mantissa com um

valor diferente de zero [31].

A quantidade total de bits ird influenciar o total de bits usados para expoente e mantissa, além do
valor da constante bzas. O valor de sinal sempre serd representado por 1 bit, enquanto a quantidade

de mantissa e expoente podem variar, conforme equagio abaixo:
S0 €p €1 ... €P_1 mo mq ... mq_l. (2.29)

Neste trabalho, o grupo de interesse ¢ o dos nimeros normalizados, os quais possuem a Equagio

2.30 para transformar a representagio em bits e notagio cientifica.
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Valorsipe = (-1)02°7045 (1 + m). (2.30)
na Tabela 2.5, apresentamos uma sintese para os principais tipos de ponto flutuante.

Tabela 2.5: Sintese dos pontos flutuantes mais conhecidos.

Nome Total de bits Quantidade de Quantidade de Bias
bits para expoente (p) bits para mantissa (q)
Double 64 11 52 1023
Float 32 8 23 127
Halfprecision 16 5 10 15
Minifloat 8 4 3 3

2.54 Entropia

E uma medida do grau de incerteza de uma fonte e é usada aqui para estimar quantos bits um

codificador gastaria para codificar cada peso [47]. A entropia H para amostras independentes é:

H == pilog,(p:), (2.31)
=0

onde 7 ¢ quantidade total de resultados possiveis e p; ¢ a probabilidade do 7-ésimo resultado pos-

sivel.

2.6 DISTRIBUICOES

O conhecimento das distribui¢des estatisticas de amostras ¢ necessirio para analisar os efeitos
da quantizagio e para projetar o quantizador [51]. A PDF (probability density function, fungio
densidade de probabilidade) de uma varidvel aleatéria X descreve como a distribuigao da varidvel se
comporta e mostra como os dados sdo distribuidos. Além disso, é a derivada da fun¢io de densidade

cumulativa [52]

2.6.1 Distribuicoes Populares
2.6.1.1 Gaussiana

A distribui¢io Gaussiana (ou normal) ¢ uma das distribui¢des mais comuns usadas e tem seu

formato associado a um sino (vide Figura 2.12) [52]. Sua PDF ¢ definida por:
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(x-p)?

exp 2?2, (2.32)

fil) = 27wo?

onde vemos que a PDF depende do desvio padrio (o) e da média (%) da varidvel Gaussiana.

fx(x)

X

Figura 2.12: PDF Gaussiana.

2.6.1.2 Uniforme

Na distribui¢do uniforme, a varidvel serd distribuida uniformemente, ou seja: 2.33 [52]:

fr(x) = ﬁ, se A <x < B. (2.33)

A Figura 2.13 ilustra a PDF de uma varidvel uniforme, sendo constante no intervalo [-4, 4] [52].

fx(x)

B
X

Figura 2.13: PDF uniforme.

2.6.1.3 Cauchy

A distribui¢io de Cauchy é muitas vezes comparada com a distribui¢do Gaussiana. Contudo,

a distribuicdo de Cauchy possui, em sua PDF, as caudas mais longas e mais planas em relagdo a
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Gaussiana. A Figura 2.14 ilustra a diferenga entre essas distribui¢des [53]. Sua PDF pode ser descrita

como:
2

fx(x) =

- ;)_2 —, (2.34)

onde meo S0 parﬁmetros.

Cauchy x Gaussiana

—— Gaussiana
—— Cauchy

fx(x)

X

Figura 2.14: Diferenca entre a PDF de Cauchy e Gaussiana.

2.6.1.4 Exponencial

A distribui¢do exponencial é um caso especial da distribui¢io chi-square [51], ilustrada pela Fi-

gura 2.15 e descrita por

fi(x) = de 8, (2.35)

fe(x)

X

Figura 2.15: PDF Exponencial.

2.6.1.5 Gama

A distribuicio gama depende de dois parimetros « (parimetro de forma) e 8 (pardmetro de
escala invertida). De acordo com esses dois valores, o comportamento da PDF ir4 variar (Figura

2.16). A distribuigdo gama ¢é descrita por [52]:
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_el
fo(x) = %ET, (2.36)

I'(x) = / e dx = (x = 1), (2.37)

onde I'(2) ¢ a fun¢io gama, uma extensio da fungio fatorial.

fx(x)

Figura 2.16: PDF gama.

2.6.1.6 Laplaciana
A PDF da distribui¢io Laplaciana ¢ descrita por

fe(x) = ge""x‘/", (2.38)

a ¢ parimetro de escala e g representa um parimetro de localizagio. A distribui¢io Laplaciana é

ilustrada na Fig. 2.17.

fx(x)

X

Figura 2.17: PDF Laplaciana.
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2.6.1.7 Alfa e Logistica

H4 duas distribui¢des menos conhecidas que foram usadas em nosso trabalho [53], [54]. A

primeira ¢ a distribui¢io alfa, definida por

1 1, 6y

() = ————=¢720"7F), (2.39)
f x2D(a) V27

sendo que @ ¢ a fun¢io de distribui¢io cumulativa normal de @, 2 e £ s3o os parimetros de forma

e escalabilidade.

A segunda, a distribuigo logistica, tem sua PDF [53], [S55]:

e—x

m. (2.4‘0)

fx(x) =

Pela Figura 2.18(a) vemos a caracterizagio da distribuigdo alfa e, na Figura 2.18(b), o formato da

PDF da distribuigio logistica.

x x
W W
X X
(a) PDF alfa. (b) PDF logistica.

Figura 2.18: PDF das distribui¢oes alfa e logfstica.

2.7 QUANTIZACAO ESCALAR OTIMA PARA VARIAVEIS ALEATORIAS EXPO-
NENCIAIS E LAPLACIANA

O estudo de Sullivan denominado “Optimal entropy constrained scalar quantization for expo-
nential and laplacian random variables” [56] constitui uma das bases tedricas para nosso trabalho.
O autor apresenta a solugio do quantizador escalar com restrigio de entropia para fontes laplacianas

e exponenciais [56].

Segundo Sullivan. para a fonte com distribui¢des exponencial, a quantizagio étima é alcangada
pela quantizagio de limiar uniforme (UTQ, uniform threshold quantizer) [56]. J4, para as distri-
buig¢des laplacianas, ele chega a conclusio de que a quantizagio 6tima com restri¢io de entropia é

a quantizagio uniforme com uma zona morta (deadzone) em torno do zero [56].
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2.8 SEMELHANCA ENTRE DISTRIBUICOES

Para analisar a semelhanga entre distribui¢des podemos usar medidas envolvendo a soma de
erros [40], como as métricas mostradas na Se¢io 2.4.2: RMSE (Eq. 2.8), SSE (Eq. 2.9), MSE
(Eq. 2.10), SAE (Eq. 2.11) e MAE (Eq. 2.12). Outra métrica ainda nio citada ¢ a divergéncia
Kullback-Leibler (Dg ). Seja P(7) a distribui¢do de probabilidade de um primeiro modelo, seja
Q(7) a probabilidade de distribui¢do de um segundo modelo, e D 1 a métrica que verifica a perda
quando a varidvel Q(7) é aproximada por P(7) [57], dada por

P(7)
Q(7)’

Essa férmula (Eq. 2.41) mede a semelhanca entre duas probabilidades. Um fato importante dessa

Dicr(PlIQ) = ) P(2)log (241)
=1

métrica ¢ o de ndo ser simétrica, uma vez que nio necessariamente Dg 1 (P||Q) éigual Dg 1 (Q[|P).
Ao analisar seu resultado, percebemos que quanto mais perto Dx 7, ¢ de zero, mais equivalentes

serdo essas duas distribui¢des.

2.9 ARTIGOS CORRELATOS

Na literatura, existem diversos trabalhos sobre compressio de RN’s, no entanto, a maioria en-
volve retreino do modelo ou uma mudanga da estrutura do mesmo (por exemplo, inser¢o ou remo-
¢30 de camadas) para realizar a compressio. Embora menos abundantes, os trabalhos de compressio

sem retreino sao 0s que mais nos interessam.

2.9.1 Compressao com Retreino

Entre os trabalhos que envolvem retreino, destacam-se os métodos que utilizam pruning [16]-
[19], [58], quantizagdo de camadas [59], compartilhamento de pesos [20] e quantizagio em geral
[21].

2.9.1.1  Pruning

No trabalho de Han et al. [16], primeiro ¢ realizado um treinamento da rede para descobrir as
conexdes importantes, cortando as no importantes. A atividade posterior foi realizar a quantiza-
¢do dos pesos, de modo que esses fossem compartilhados com outras camadas. Depois das ativi-
dades de pruning e quantizagio, a rede ¢ retreinada para afinagio dos pesos. Os autores reduziram
os tamanhos das redes VGG e AlexNet em 49x e 35X, respectivamente, com pequena perda de

acurdcia [16].

Dong et al. [58] buscaram desenvolver um método de realizar o corte(pruning) em parimetros,

embasados nas informagoes da derivada de segunda ordem da fungio de erro de cada camada. Os
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autores relatam ser possivel chegar a uma taxa de compressio (definida por eles como a proporgio
dos nimeros de parimetros preservados em relagio aos parimetros originais) de 11% para AlexNet
sem perdas, ap6s retreinamento. Para VGG, hd uma taxa de redugio de pesos de 7.5% ocasionando
uma perda na acurdcia de aproximadamente 0,5% apds retreinamento [58].

Lietal. [17], na etapa de treinamento, usam a medida do segundo momento no otimizador de
Adam [60] para avaliar a relevincia de cada peso na rede. Em seguida, com cada peso com sua im-
portincia realizam um corte baseado em limiar calculado automaticamente. Os resultados obtidos

sdo: um corte de 12,5% dos pesos para AlexNet com menos de 1% de prejuizo a acuricia [17].

Zhao et al. [18] desenvolveram duas fungdes de 16gica nebulosa (f#zzy), uma para a "impor-
tincia"e a outra para “nio-importincia” dos pesos. Os pesos importantes sio retreinados, os “nio
importantes” sdo cortados, através de um algoritmo denominado a-c#¢ com « aumentado progres-
sivamente. Esse método consegue reduzir o tamanho de armazenamento darede VGG-16 em 73% e
VGG-19 em 77%, com resultados similares ao original [18]. Por fim, Serra et al. [19] desenvolveram
um algoritmo chamado de Lossless Expressiveness Optimization que encontra as camadas e unidades

da RN que podem ser removidas ap6s reparametrizagio [19].

2.9.1.2 Quantizagcdo em camadas

Na quantizagio feita separadamente para cada camada, um trabalho relevante é o de Zhu et
al. [59], que visa realizar a quantizagio da rede com diferentes larguras de bits associados para di-
ferentes camadas. Nesse caso, cada camada terd sua quantizagdo uniforme acoplada 2 estrutura da
rede e, por esse motivo, participam do treinamento da rede. Os resultados mostram uma queda
maior que 10% da acurdcia tanto Top 5 e Top 1 para a rede AlexNet com uma taxa de compressio
10,2% [59].

2.9.1.3 Compartilhamento de pesos

Kim et al. [20] propéem dois modos de realizar a compressio: pruning e compartilhamento
de peso da RN LeNet. As etapas desse trabalho sio: remover os pesos “pequenos”; retreinar a
rede; agrupar os pesos com valores representativos; retreinar a rede, novamente. Ao final, na rede
LeNet conseguiram reduzir a quantidade de parimetros de 430500 para 32, preservando a acurdcia
original (0,01% de diferenga) [20].

2.9.1.4 Quantizacao geral

Outra forma de comprimir RN’s é quantizando os pesos durante o treinamento da rede, apro-
ximando esses pesos para um limitado codebook de entrada. Esse é o principal ponto do trabalho
de Faraone et al. [21]. Em seus resultados, a RN AlexNer obteve detrimento de até 1% no funcio-
namento da rede, a VGG com a acuricia (tanto Top 1 e Top 5) piorando aproximadamente 1% e a
ResNet [61], com prejuizo de um pouco mais de 1% [21].
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2.9.2 Compressao sem Retreino

Os artigos que envolvem retreino se diferenciam do presente trabalho, uma vez que esse procura
ndo usar retreino, o que demandaria mais recursos computacionais e mais tempo. Nesse contexto,
o método de compressao sem retreino ¢ mais relevante. Das pesquisas de compressao sem retreino
podemos destacar trés métodos diferentes: compressio com agrupamento [62], compressio com

compartilhamento de pesos [63] e, também, quantizag¢io escalar [64].

Seo e Kim usam um método hibrido com compressio uniforme seguido de agrupamento por
K -means para comprimir a rede AlexNet. Tanto para acuricia Top 1 e Top S conseguem chegar 2
quantiza¢io com 32 niveis, com uma perda de 0,5% para ambas métricas (accy e accs) [62].

Dupuis etal. [63] empregam compressio por compartilhamento de pesos entre as camadas com
a necessidade de realizar o agrupamento para cada camada da rede. Vale ressaltar que os autores
usam modelos no formato ONNX. No final, conseguem chegar a uma taxa de compressio (de-
finida como a proporgio entre o tamanho do modelo original e uma aproximagio do que seria o
tamanho do modelo desenvolvido) por volta de 5, com uma perda de menos de 1% na acurécia
Top 1 para as redes ResNet e Squeezenet [63]. A pesquisa de Dupuis et al. ndo verifica a métrica Top

S para seus resultados.

Em Haase et al. [64], por sua vez, os pardmetros passam por uma quantizagdo escalar depen-
dente ou quantizagio trellis-coded. Depois da quantiza¢io, Haase et al., explicam como ¢ feita a
codificagio entrdpica, fundamentada no codificador DeepCABAC. Nos experimentos, foram usa-
das as redes VGG, ResNet, MobileNet (classificagio de imagem), DCase (classificagio de atdio) e
UCI2B (autoenconder de imagem). Nessas redes, os autores obtiveram uma taxa de compressio
C = 0,118, sendo C = 2—2, onde R¢ é um numero de bits comprimidos e Rp o nimero de bits
nio comprimidos, contudo, as redes tiveram um prejuizo no desempenho, em média, de 0,37% na

acuricia [64].

A pesquisa em andamento difere da literatura acima apresentada nos seguintes aspectos: realiza
um estudo maior sobre os pesos e sua distribui¢io, compara diferentes métodos de quantizagio,
utiliza maior numero de redes. Por outro lado, assemelha-se a Dupuis [63] a0 usar modelos RN no

formato ONNX.

2.9.3 MPEG-NNR

Sobre a compressio de redes neurais, encontramos a chamada do MPEG para compressio de
redes neurais, tal iniciativa tem o nome de MPEG-NNR [65]. O objetivo do NNR ¢ definir uma
representagio comprimida, interpretdvel e interoperdvel para redes neurais treinadas [65]. Para
alcangd-lo, a nova representagio deve ser capaz de retratar diferentes tipos de redes neurais (LSTM -
memoria de curto e longo prazo, CNN - redes neurais convolucionais, RNN - redes neurais recor-
rentes e outras) [65]. Deve, também, possibilitar incrementar redes neurais e modifici-las, ensejar

a escalabilidade dos modelos, ser possivel inferir a rede comprimida e, também, possibilitar o uso
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com recursos limitados dessas redes [65].

Os formatos de intercimbio como ONNX (se¢do 2.3) e NNEF (Newural Network Exchange For-
mat) sio recomendados pelo MPEG-NNR para realizar uma representagio comprimida de redes
neurais [65]. Em seguida, o documento do MPEG-NNR mostra virios usos ¢ a visio geral dos

I‘quliSitOS para cada um.

Em margo de 2019, houve uma chamada de proposta com os seguintes requisitos [65]: repre-
sentacio eficiente do modelo (O tamanho do modelo comprimido tem que ser pelo menos 30%
menor do que o modelo original); suportar diferentes tipos de redes neurais (CNN, RNN e ou-
tros); a representagio comprimida contendo todos os pardmetros e pesos da rede neural; realizar a
inferéncia do modelo comprimido; 0 método para comprimir a rede neural independente do con-
junto de dados usado para treinar o modelo original; baixo poder computacional e consumo de
memdria da realizar a decodificagdo [65].
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3 QUANTIZACAO DE PESOS

Esse trabalho busca estabelecer um método, sem utilizar retreinamento, para realizar a compres-
si0 dos pesos (a partir desse momento pesos podem referenciar tanto aos pesos como aos vieses)
das RN’s, de forma que nio implique em uma degradagio do funcionamento da mesma. Assim,
procura-se diminuir as taxas (quantidade de representa¢des) sem perda expressiva de precisao na
saida da RN. Os pesos no formato ONNX sio representados, geralmente, por floats que possuem
32 bits. Essa quantidade de bits permite um total de mais de quatro bilhdes de representagdes.
Baseando-se em técnicas de quantizagio, visa-se diminuir as quantidades de representagdes que sao
necessdrias para constituir os pesos de um modelo. Um caso comum de compressio ¢ a feita em

imagens que utilizam a quantizagio como forma de diminuir os niveis utilizados.

Ainda serdo exploradas as diferentes formas utilizadas para comprimir as RN’s, em especial, os
pesos e vieses presentes nas RN’s. O método da pesquisa consiste em duas grandes etapas, apresen-

tadas na Figura 3.1:

Comparar
distribuicbes de Quantizacao e
referéncia com »| comparacao de
a PDF dos resultados

pesos

Figura 3.1: Visdo geral das principais etapas do trabalho.

* Comparagio entre distribuigoes: a distribui¢io do modelo ¢ contraposta com distribui¢oes
conhecidas.

* Quantizagio e resultados: cada peso do modelo passa por diferentes tipos de processo de
quantizagio com menos niveis. Em seguida, ¢ realizada a comparagio entre os resultados que

foram obtidos.

3.1 MODELOS DE REDES NEURAIS

Antes de apresentar a comparagio entre a fun¢io densidade probabilidade dos pesos dos mode-
los com as distribui¢des de referéncia, serio apresentados os modelos de RN’s utilizados em todas
etapas da pesquisa. Os modelos em questio estio todos no formato ONNX [15] e sdo conhecidos
como arquiteturas de RN populares e sio do tipo CNN. A Tabela 3.1 apresenta as informacgoes re-
lativas a esses modelos. Nela, podemos ver o tamanho do arquivo ONNX referente a cada modelo,
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assim como a porcentagem representando o quanto do arquivo ¢ composto por pesos e vieses, bem
como vemos qual ¢ a aplicagdo daquela RN.

Tabela 3.1: Modelos ONNX e informacdes bisicas.

Razio percentual
Tamanho do arquivo p

Modelo de pesos e vieses no Tipo
(Em MB) ,
arquivo (%)

VGG19-bn-7 [36] 548,15 99,997 Classifica¢io de imagem
caffenet [66] 232,57 99,999 Classificagio de imagem
bvlcalexnet-9 [34] 232,57 99,999 Classificagio de imagem
renn-ilsvre [67] 220,06 99,999 Classificagio de imagem
resnetl01-v2-7 [61] 170,40 99,930 Classifica¢do de imagem
efficientnet-lite4 [39] 49,54 99,841 Classificago de imagem
Densenet [68] 31,2 99,587 Classificagio de imagem
Lenet [35] 26,72 99,907 Classificagio de imagem

Age - Lenet [69] 22,85 99,862 Classifica¢io de idade
Gender - Lenet [69] 22,83 99,861 Classificagio de género
Mobilenet [33] 13,59 99,366 Classificagio de imagem
Shufflenet [38] 5,46 99,246 Classificagio de imagem
Squezenet [37] 4,73 99,713 Classifica¢io de imagem

3.2 RELACAO E DEPENDENCIAS ENTRE OS PESOS

Uma das formas de verificarmos qual a melhor maneira de realizar a quantizagio de dados ¢
procurarmos se eles possuem algum tipo de padrio e dependéncia entre si. A alta dependéncia dos
dados nos indica que a quantizagio vetorial poderia ser a melhor forma de realizar a quantizagio.
Essa verificagdo pode ser feita por: correlagio, andlise espectral dos dados e autocorrelagio dos da-

dos.

Na presente pesquisa, para verificarmos a dependéncia dos dados temos que verificar os pesos
e vieses do modelo da rede neural. Porém, para verificarmos se existe dependéncia entre os pesos,
h4 que se estabelecer uma ordem para eles, os pesos sio separados em camadas (as quais podemos
ordenar desde a camada de entrada até a camada de saida), mas dentro das camadas nao podemos
encontrar uma ordem entre os pesos, a priori. Assim, sem uma ordenagio intrinseca entre os pesos e
vieses de uma camada nio hd razdo para procurar correlagio entre os pesos. Do mesmo modo, como
nio podemos determinar uma sequéncia entre os pesos, nio podemos analisar a autocorrelagio e a

andlise espectral.

Desse modo, a Ginica forma de verificarmos qualquer dependéncia entre os dados de uma rede

neural, sem ordenamento definido, ¢ calculando a autocovariincia. Porém, para a rede neural sgue-
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ezenet (4,73 MB), o total de coeficientes de autocovariincia seria aproximadamente 22,4 MB, tarefa
que exige um grande poder computacional e tempo. Por esse motivo, nio foram calculados os co-

eficientes de autocovariincia.

Portanto, como nio podemos ter evidéncias que exista algum tipo de dependéncia (ou relagio)
entre os pesos, nio podemos indicar a quantizagio vetorial para os pesos ou a transformagio dos

dados. Por isso, optamos pelo uso da quantizagio escalar.

3.3 COMPARACAO DA FUNCAO DENSIDADE DE PROBABILIDADE

Apés analisarmos os modelos usados e percebermos que a maioria do arquivo ONNX ¢ for-
mado por pesos dos modelos de IA, passamos para a etapa em que buscamos caracterizar a distri-
bui¢io de amplitude. Essa fase é fundamental, uma vez que podemos nos valer das distribuigoes
conhecidas para utilizar métodos de quantizagio eficientes para determinadas distribui¢des. Além,
podemos usar outras informagdes que se tornam visiveis ao analisar uma distribui¢io (se os dados
se concentram mais perto do centro, se tem comportamento simétrico, por exemplo). O fluxo desse
estdgio € apresentado na Figura 3.2.

Estimar a Para cada
Adquirir os funcéo distribui¢éo Ordenagéao
pesos do » densidade »| conhecida, comparar > de I =
modelo probabilidade com a PDF dos resultados
dos pesos pesos

Figura 3.2: Passos para a comparagio da PDF com distribui¢c6es conhecidas.

3.3.1 PDF dos pesos

Para estimar a PDF dos pesos utilizamos um simples histograma. Comparamos a estimag¢io com
um ndmero de fungdes de distribuicoes populares como: exponencial (2.6.1.4), uniforme (2.6.1.2),
Cauchy (2.6.1.3), Laplace (2.6.1.6), alfa (2.6.1.7), logistica (2.6.1.7), gama (2.6.1.5) e Gaussiana
(2.6.1.1). Para quantificar e medir qual distribui¢io mais se aproxima da distribui¢do dos pesos,
recorreu-se a algumas medidas de dispersio, para que possa ser possivel medir a semelhanca entre
cada distribui¢io e a do modelo de ML. Para tanto, foram utilizadas a Dg 1 e SSE, explicadas nas
Secbes 2.8 € 2.4.2.1, respectivamente. Com os resultados para cada uma das duas métricas, esses sio
ordenadas a fim de que seja possivel determinar qual distribui¢do poderia ser usada para modelar

os pesos de uma RN.
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Figura 3.3: Histograma dos modelos.



3.4 ANALISE DE SIMILARIDADE DE DISTRIBUICOES

Os histogramas sio usados para estimar a PDF de cada modelo e sio apresentados na Figura 3.3.
A Figura apresenta os dados centralizados na média e o eixo y (Pesos) é limitado onde a maioria dos
dados se concentram. Ao observar os histogramas, percebemos que os pesos, em sua maioria, se

concentram em torno de 0 (para todos os modelos mostrados na Figura 3.3).

3.4.1 Comparacao entre as distribuicoes conhecidas e PDF’s dos modelos

Para cada um desses modelos, houve a comparagio da fungio de densidade de probabilidade
original em busca das distribui¢ces conhecidas com maior semelhanga. Para averiguar o resultado
da similaridade foram usadas a SSE (Se¢do 2.4.2.1) e a Dx 1, (Secdo 2.8).

Tabela 3.2: SSE entre distribuicbes padrées e a distribuicdo de cada modelo.

Redes 14 dist. semelhante | 2“ dist. semelhante | 3 dist. semelhante
Caffenet Laplaciana Logistica Gaussiana
Alexnet Alfa Laplaciana Logistica
Densenet Laplaciana Alfa Gaussiana

efficientnet Laplaciana Logistica Gaussiana

GoogLenet Laplaciana Logistica Gaussiana
Age - googLenet Logistica Laplaciana Cauchy
Gender - googLenet Laplaciana Logistica Cauchy
Mobilenet Laplaciana Gaussiana Logistica

Renn Gaussiana Laplaciana Alfa

Zfnet Laplaciana Logistica Gaussiana

Resnet Laplaciana Logistica Gaussiana

Shufflenet Cauchy Laplaciana Logistica
Squeezenet Logistica Laplaciana Gaussiana
VGG Alfa Laplaciana Logistica

A Tabela 3.2 sintetiza os resultados das comparagdes, com o objetivo de mostrar as distribuigoes
que mais se assemelham 4 PDF de cada modelo. A coluna 14 dist. semelbante contém a distribui-
¢o com o melhor resultado. J4, as colunas 27 dist. semelbante e 3% dist. semelbante referem-se a
segunda e a terceira distribuigio mais similar aos pesos do modelo, respectivamente. A distribui¢io
Laplaciana ¢ a melhor distribuigdo, de acordo a métrica SSE, para 57,14% e a segunda melhor para
42,86% dos modelos da Tabela 3.2. Em comparagio, vemos que a distribuigio logistica ¢ a melhor
distribui¢io para dois modelos, a segunda melhor em seis oportunidades e a terceira melhor em 4
oportunidades.

A Tabela 3.3 condensa os resultados para a métrica DKL buscando a primeira, a segunda e ter-
ceira distribui¢o mais similar a PDF dos pesos, segundo a métrica Dy ;. A Laplaciana, novamente,

possui bons resultados com 42,86% dos casos, sendo a primeira distribui¢io mais similar (14 dzsz.
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Tabela 3.3: Dg entre distribui¢es padrdes e a distribuigdo de cada modelo.

Redes 14 dist. semelhante | 2¢ dist. semelhante | 3 dist. semelhante
Caffenet Gaussiana Laplaciana Cauchy
Alexnet Cauchy Alfa Laplaciana
Densenet Cauchy Laplaciana Alfa

Efficientnet Laplaciana Logistica Gaussiana
GoogLenet Laplaciana Logistica Gaussiana
Age - googLenet Cauchy Laplaciana Logistica
Gender - googLenet Laplaciana Cauchy Logistica
Mobilenet Laplaciana Logistica Alfa

Renn Gaussiana Laplaciana Alfa

Zfnet Alfa Laplaciana Logistica

Resnet Laplaciana Logistica Gaussiana

Shufflenet Cauchy Laplaciana Logistica
Squeezenet Laplaciana Logistica Gaussiana
VGG Alfa Laplaciana Logistica

semelbante). E, em 50% dos modelos ¢ a segunda distribui¢io mais similar (27 dist. semelbante).

Com base na informagio de que a distribui¢io de Laplace é uma boa aproximagio, conforme as
métricas SSE e Dg 1, podemos utilizar a conclusio de Sullivan. O autor relata que para distribui-
¢oes Laplacianas, a quantiza¢io 6tima ¢é aproximada pela quantizagio uniforme com zonas mortas
(deadzone) [56]. Por isso, neste trabalho nos concentramos em quantizagio uniforme.

3.5 QUANTIZACAO E COMPARACAO DE RESULTADOS

O resultado de Sullivan diz que para distribui¢des Laplacianas, a quantiza¢io 6tima ¢ aproxi-
mada pela quantiza¢io uniforme com deadzone [56]. Aliado a essa perspectiva, podemos chegar a
ultima etapa do trabalho: a quantizagio dos pesos e a avaliagio do seu efeito no funcionamento da
rede. Paraisso, realizou-se a comparagio entre o resultado da rede quantizada e o resultado esperado
(ground truth). No total, sio utilizados cinco métodos de quantizagio, dando um maior destaque
as quantizagdes uniformes. Todos os pesos sio quantizados e desquantizados antes da avaliagdo da
rede.

A seguir, apresentam-se os tipos de quantizagdes usados, a variagio dos niveis e do intervalo

(mdximo — minimo) e X}, para quantizagio nao uniforme lei p.

* Quantizag¢io uniforme midrise (Eqs. 2.23 e 2.24), variando os niveis e o intervalo:

— intervalo:

* maximo: 1
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* minimo: -1
— nivel: 2,2 <7 <24
* Quantiza¢io uniforme midtread (Eqs. 2.21 e 2.22), variando os niveis e o intervalo:

— intervalo:
* maximo: 1
* minimo: -1
— nivel: 2,2 <7 <24

* Quantiza¢io nio uniforme, baseada na lei #, com as seguintes especificagdes:

- Xmﬂx = 15

— quantidade de niveis: 21,2 < i< 24.

* Quantizagio deadzone, variando o passo de deadzone (), niveis e o intervalo (mdximo —
minimo), conforme Equagdes 2.25 e 2.26. A varia¢io de J ¢ descrita na Tabela 3.4.

Tabela 3.4: Quantiza¢io deadzone: 9 e os niveis utilizados.

) Niveis Miximo Minimo
01 20,2<7<24 1 -1
025 2/,2<i<24 1 -1
0.4 2/,2<i<24 1 -1
0.7 2/,2<i<24 1 -1

* Quantiza¢io minifloat, com o uso da representagio IEEE halffloar descrita na Tabela 2.5,
além das representagdes derivadas a partir da equagio que sio apresentadas na Tabela 3.5.
As representagdes que foram derivadas (Tabela 3.5) s3o pontos flutuantes simplificados com-
posto apenas pela parte normalizada. As partes nio normalizada, Not 2 Number, infinito e

zeros ndo foram representadas.

A Tabela 3.5 mostra os pontos flutuantes que foram definidos para esse trabalho e a quanti-

dade de bits usados para expoente e mantissa.

3.6 DATASET E CONDIGOES DE TESTES

Na dltima etapa da pesquisa, as novas RN’s comprimidas passam pela validagdo de seus resul-
tados. Neste trabalho, foram utilizados dois dataset’s para avaliar o funcionamento das redes, o
conjunto de dados escolhidos depende do tipo aplica¢io do modelo. O conjunto de dados do /ma-
geNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012) [43] foi utilizado para os
modelos que classificam imagens. Entretanto, o conjunto de dados Adience Benchmark [70] foi
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Tabela 3.5: Representagdes de pontos flutuantes usadas.

Bits Bits Bits

) ] ] Representagio
Bits Sinal Expoente Mantissa

12 1 4 7 50 €0 €1 €2 €3 My M| Mo M3 M4 Ms Mg
10 1 3 6 50 €0 €1 €2 M M1 M M3 W4 Ms

8 1 3 4 S0 €0 €1 €2 m 77y My M3

8 1 4 3 S0 €0 €1 €2 €3 1 My My

7 1 3 3 50 €0 €1 €2 Mo my Mo

7 1 2 4 50 €0 €1 Mo My My M3

6 1 2 3 S0 €0 €1 Mg My My

6 1 1 4 50 €0 Mg M1 mo M3

S 1 2 2 50 €0 €1 Mo My

S 1 1 3 S0 €0 M MMy My

4 1 1 2 S0 €0 7o My

4 1 0 3 S0 Mo iy my

usado tanto para classificagio de género quanto para classificagio de faixa etdria. A Tabela 3.6 sin-

tetiza as informagdes dos dataset’s e ilustra a quantidade de dados usados.

Tabela 3.6: Informagdes do tipo de RN’s e o dataset utilizado.

Tipo Saida do Modelo Dataset Quantidade
Classificagdo de Imagem 1000 classes de imagens ILSVRC 2012 [43] 50000
Classificagio de Género  Homem ou mulher Adience Benchmark [70] 26580
Classificagdo de Idade 8 faixas etdrias Adience Benchmark [70] 26580

Como exposto na Tabela acima, o dataset ILSVRC 2012 ¢ composto por 50000 imagens di-

vidas em 1000 classes, essas variam desde limio até cadeira de balango, passando por outras 998

classes. A Figura 3.4 mostra alguns exemplos retirados entre as 50000 imagens. Por outro lado, o

Adience Bench possui 26580 fotos, referentes a 2284 pessoas, com a informagio acerca do sexo e

faixa etdria de cada pessoa. As idades sdo divididas em:

* idade entre 0 e 2 anos

* idade entre 2 e 4 anos

* idade entre 8 e 13 anos

* idade entre 15 e 20 anos
* idade entre 25 e 32 anos

* idade entre 38 e 43 anos
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* idade entre 48 € 53 anos

e Acima de 60 anos.

A Figura 3.5 apresenta trés exemplos retirados do dataset Adience Benchmark.

Figura 3.5: Exemplos de imagens do dataset Adience Benchmark.

Com o objetivo de realizar os testes, além de escolher o dataser correto (Tabela 3.6), foram de-
finidos para cada tipo de RN’s qual das métricas apresentadas na Se¢do 2.4 devem ser escolhidas,
essas sdo importantes para medir a qualidade da rede, determinando se houve ou nio prejuizo nos

modelos de ML comprimidos.

* Classificagio de Imagem: Acurdcia Top 1 (acc) e Acurdcia Top S (accs), ver Segdo 2.4.4. As
métricas erro Top le Top 5 sdo exatamente O OPoOsto da acuricia, por isso serdo suprimidas.

* Classificagao de idade: Acurdcia (Se¢do 2.4.1).

* Classificagio de género: Acuricia, recall, precisio e fI-score (Se¢io 2.4.1).
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3.7 COMPARACOES ENTRE OS RESULTADOS

Para a fase de comparagio nem todas as redes citadas na Tabela 3.1 foram usadas, devido a difi-
culdade em realizar a etapa da validagdo dos modelos Alexnet, Densenet, ZFnet e Renn. Entretanto,
as Tabelas 3.7 e 3.8 expdem os modelos que foram usados na comparagio de resultados, assim como

exibe a entropia do modelo padrio e os resultados originais das métricas (conforme a Se¢io 3.6).

Tabela 3.7: Resumo dos modelos de classificagio de Género e Idade.

Modelo Entropia Acuricia Recall Precisio Fl-Score

Gender - Googlenet 22,439 82,379 0,921 0,786 0,848
Age - Googlenet 22,459 55,189 - - -

Tabela 3.8: Resumo dos modelos de classificagdo de imagem.

Modelo Entropia  Acurdcia Top1 Acuricia Top 5
Squeezenet 20,221 53,77 77,138
Shufflenet 20,391 42,422 68,134

Googlenet (ILSVRC) 22,653 67,774 88,34
Efficientnet 23,513 77,734 93,684

Caffenet 25,213 56,264 79,522
Mobilenet 21,673 69,3 88,934

Resnet 24,734 77,214 93,614

VGG 25,661 91,816 73,646

Ao averiguar os 10 modelos presentes nas Tabelas 3.7 e 3.8, temos que a média das entropias ¢
22,896 bits/pesos (bpp). A unidade para verificar a entropia ¢ bits por pesos ou bpp. Os grificos, a
seguir, sio de taxa (entropia dos pesos quantizado, em bits/pesos) e distor¢ao (acurdcia do modelo
ou outras métricas relacionadas). As legendas das préximas figuras tém o seguinte significado:

* MIDRISE: Corresponde a quantiza¢io uniforme com midrise.

* MIDTREAD: Corresponde 4 quantizagio uniforme com Midtread.

* NON-UNIFORM: Corresponde a quantiza¢io nio uniforme, baseado na lei .

* MINIFLOAT: sio as quantizagdes pelas representagdes de pontos flutuantes.

Para as figuras que comparam o resultado deadzone, as legendas numéricas correspondem ao
usado para variar o tamanho da zona central. Nos grificos das préximas segoes, os valores das mé-

tricas (seja acurdcia, fI-score, recall, precisio, acurdcia Topl ou acuricia Top5) serdo representados
por uma linha horizontal pontilhada.
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3.7.1 Uniforme x Nao Uniforme
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Figura 3.6: Comparagdes de taxa e distor¢io (entropia X acuricia) entre quantizagio uniforme e nio uniforme para
redes de classificagio de género.

Para o modelo de classificagio de género, Gender - Lenet, temos os resultados na Figura 3.6. Ao
analisi-la, podemos perceber que ¢ possivel chegar em torno de 2 bits/pesos, com comportamentos

similares para as 4 métricas usadas para Gender - Googlenet. Também, nessa figura, vemos que os
melhores métodos sio minifloat e midtread.
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Figura 3.7: Comparagdes de taxa e distor¢io (entropia X acurdcia) entre quantizagio uniforme e nio uniforme para
redes de classifica¢io de idade.

No modelo Age - Googlenet, novamente, consegue-se chegar em taxas perto de 2 bpp, mantendo
aacuricia préxima ao valor original, conforme a Figura 3.7. Inclusive, nota-se que para os métodos
midtread e minifloar acontece um leve aumento na acuricia ao baixar as taxas, o que nio ¢ usual,

embora possivel. Ao comparar os métodos, vemos que a midtread e minifloat possuem os melhores
resultados, sendo o comportamento dos dois quantizadores similares.
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Figura 3.8: Comparagdes taxa e distor¢do (entropia X acurdcia) entre quantizagio uniforme e ndo uniforme para redes

de classificagio de imagem.

42



A Figura 3.8 contém todos os resultados e compara os métodos nio uniforme e uniforme dos

modelos que classificam imagens.

Ao observar os gréficos, nio se nota um método que se sobressaia para todas as redes. Na Sgue-
ezenet, vemos melhores resultados para midtread e midrise (o método minifloat também possui
um bom desempenho), alcanga uma entropia menor que 5 bits/pesos, com resultados similares ao
original. Na RN Shufflenet, temos um bom desempenho produzido pela quantizagio midrise, pois
possibilita uma entropia ao redor de 5 bits, sem prejuizo ao funcionamento da rede. Para GoogLe-
net, os métodos minifloar e midrise tém os melhores resultados e conseguem ter entropia perto de
2 bits, com pouco detrimento das métricas acurdcias Top 1 e Top 5. Na Efficientnet ¢ Caffencet, os
métodos midrise e midtread se destacam. Para a Efficientnet, a taxa alcangada é um pouco maior
que 5 bits/pesos; para a Caffenet, chega-se a taxa de 2 bpp. A RN VGG tem uma melhor resposta
para o método midtread, embora os 4 métodos possuam resultados similares, conseguindo chegar
auma entropia por volta de 2 bits/pesos.

Por fim, as duas redes que possuem resultados divergentes das demais sio a Mobilenet e a Res-
net. Para a Mobilenet, a curva referente a0 quantizador nio uniforme é a que apresenta melhor
desempenho, porém as taxas sio bem elevadas (em comparagio com as demais) sendo maiores que
10 bpp. A Resnet tem a midrise e a ndo uniforme como os melhores quantizadores e entropia de
aproximadamente 8,5 bits/pesos. Em geral, vemos que os métodos uniformes possuem melhores

resultados para as redes, a excegdo das duas ultimas citadas.

3.7.2 Deadzone

com o método deadzone, conforme Figura 3.9, ¢ possivel chegar a baixas taxas de entropia com
a acurdcia em niveis similares. Como descrito na Se¢io 2.5.2, variando o deadzone podemos im-
plementar todas quantiza¢des uniformes, o valor de 9 = 0.5 representa o quantizador midtread
e o valor 9 = 0.0 representa o quantizador midrise. Nos grificos 3.9(b) e 3.9(c), em trés opor-
tunidades a precisdo cresce bastante, e em duas ocasides, o recall aumenta. Nesses 5 momentos,
enquanto a precisio aumenta, o 7ecal/ diminui, e vice-versa. Por isso, o uso da métrica f1-score torna

a comparag¢do mais justa e estdvel.

No modelo para a classificagio de idade, com 0 método deadzone, vemos novamente que para
alguns 9, a acurdcia cresce para entropia em volta de 2 bits/pesos.
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Figura 3.11: Comparagoes de taxa e distorgdo (entropia X acurdcia) entre diferentes tamanhos de deadzone para virias

redes de classificagdo de imagem. O tamanho da deadzone ¢ indicado na legenda.
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A Figura 3.11 contém as curvas referentes ao quantizador deadzone comparadas com os melho-
res quantizadores entre nio uniforme e uniforme. A rede Squeezenet mostra um resultado similar
para os 4 casos de deadzone e para os quantizadores uniformes (midrise e midtread). Para a Shuf-
flenet, conseguimos ver que deadzone com 0 = 0.4 tem um melhor desempenho, com taxas aproxi-
madamente 6 bits/pesos. A RN Googlener mostra os comportamentos dos 6 quantizadores muito
préximos uns aos outros, resultando em entropia um pouco maior que 2 bpp. A efficientnet, como
a Googlenet, mantém bons resultados para todos os quantizadores deadzone, conseguindo chegar a
taxas de um pouco mais de 6 bpp. Os gréficos da Caffenet expdem um resultado melhor (um pouco)
para a midtread, para entropia de 2 bits. A VGG possui um resultado melhor para deadzone com
9 = 0.7, os niveis entrépicos chegam perto de 2 bpp.

Para a rede Mobilenet, o quantizador nio uniforme havia se destacado na comparagio com os
uniformes. Ao confrontar com os métodos de deadzone, vemos que deadzone com d = 0.7 tem
um bom desempenho chegando a competir com 0 método nio uniforme. Embora se aproximem,

ainda ¢ possivel verificar um melhor desempenho para a quantiza¢io nio uniforme.

As curvas referentes ao quantizador deadzone (9 = 0,1, = 0,25e¢d = 0,7) para a Resnet
possuem um resultado similar com a midrise (9 = 0.0) e com a nio uniforme. O método com
deadzone mostra um desempenho um pouco melhor que a midrise (5 = 0.0) e a ndo uniforme;

para esse método, a entropia é um pouco inferior 7 bpp.

3.7.3 Sintese dos resultados

As Tabelas 3.9 € 3.10 sintetizam os resultados para os 10 modelos. Nelas sio mostrados o melhor
método (uniforme, no uniforme ou deadzone) e o nivel que pode ser atingido. Ademais, aparecem
informagbes sobre o desempenho atingido para as métricas e a diferenga para o modelo base. A
ultima coluna ¢ a taxa de compressio (CR, compression rate), calculada assumindo um codificador

entropico perfeito € 0s pesos possuem 32 bits:

32
CR==, (3.1)
podemos calcular a redugio de espago pela férmula:
32-H
RE = 33 (3.2)

Pela andlise da Tabela 3.10, constatamos que a quantizagio deadzone possui o melhor resultado
para quase todas as redes, a excegdo da Mobilenet (melhor resultado pela ndo uniforme). Entretanto,
essa teve um resultado satisfatdrio alcangado pela deadzone & = 0.7, com um prejuizo méximo de
1% para a acc; e sua entropia reduzida para 11,9 bpp (diminuindo 0,5 bpp em relagio ao método
apresentado na Tabela 3.10).

Trabalhos encontrados na literatura nio sio usados para essa quantidade de modelos, geral-
mente, se restringem a dois. Ao analisar os estudos que usam retreino, vemos para os métodos que

46



Tabela 3.9: Resumo dos melhores resultados da rede em classificagdo de Idade e Gérero.

Modelo Melhor Nivel Acuricia  Recall Precisio F1-Score Entropia CR  RE
Método (Dif. %) (Dif. %) (Dif. %) (Dif. %) (Dif.)
Gend 82,918 0,908 0,8 0, 1,351
T Midtread ’ 7 735 Bl 57 0957
Googlenet (-0,538)  (0,014) (-0,017)  (0,001) (22,439)
A Dead ,802 0,96
ge eadzone SS ) 9 3333 0,97
Googlener (0 =0, 4) (-0,613) (21,50)
Tabela 3.10: Resumo dos melhores resultados da rede.
Modelo Melhor Nivel Acc. Top 1 Acc. Top 5 Entropia CR  RE
Método (Diferenca %) (Diferenca %) (Diferenca)
»2 76,578 4,67
Squeezenet Midtread >3 > 6,85 0,854
(0,57) (0,56) (15,542)
41,77 61,512 6,078
Shufflenet Midrise 9 526 0,81
(0,652) (0,626) (14,314)
Dead, 67,03 87,938 3,06
Googlenet caczone $ 10,45 0,904
(0=0,4) (0,744) (0,402) (19,594)
Dead 77,194 93,374 6,528
Efficientnet cacaone 9 49 0796
(3=0,7) (0,54) (0,74) (16,985)
55,5 78,958 1,828
Caffenet Midrise 8 17,5 0,942
(0,79) (0,564) (23,385)
69,0 88,926 12,414
Mobilenet  Nio Uniforme 13 2,03 ’ 2,58 0,612
(0,27) (0,018) (9,257)
Deadzone 76,632 93,322 7,736
Resnet 13 413 0,758
(9=0,7) (0,582) (0,292) (16,997)
Dead 1,698 2
oG eadzone 73,576 91,69 ,653 12,06 0917
(9=0,7) (0,07) (0,118) (23,007)
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usam prunning hd uma redugio da VGG em 49x (redugio de espago de 0,98) [16], um CR de
7,5% [58]. Zhao et al demonstram uma redugio de 73% da rede V'GG-19. Nesta pesquisa, porém,
chegou-se a uma redugio de espago de 0,917 e uma taxa de compressio de 12,06. Assim, conclui-
se que ¢ um pouco pior que o estudo de Han et al [18] e melhor em comparagio aos estudos de
Han [16] e Dong [58]. Em confronto a pesquisa de Faraone et al [21] que usa quantizagio geral
com retreino, conseguiu-se melhorar a taxa mantendo a acuricia Topl e acuricia TopS5 com prejui-

zos menores que 1%.

Acerca dos trabalhos que nio envolvem retreino, podemos mencionar Dupuis et al que conse-
guem reduzir em 5x o montante de dados (0,8 de economia de espago) para as modelos Squeezenet
e Resnet [63] (com perda de no maximo 1% para acurdcia Topl). Do nosso lado, conseguiu-se uma
economia de 0,854 € 0,758 para Squeezenet e Resnet, respectivamente. Portanto, mantiveram-se re-

sultados similares com uma perda menor (0,582% no méximo) que a relatada por Dupuis et al [63].

3.8 RETREINAMENTO

Depois de realizar a compressio para todos os métodos, escolheu-se a rede Sgueezenet e a ver-
sio quantizada por deadzone, com 9 igual 0,4 e 9 bits de niveis. A RN comprimida selecionada
tinha uma pequena degradagio em seu funcionamento: 0,098% para acc; e 0,158% para Top 5, a
entropia, por sua vez, estava em 5,688 bits/pesos.

No retreinamento, utilizamos um dataset menor, composto por cerca de 34000 imagens [71].
Por sua vez, nos treinamentos usamos 150 e 300 épocas. Para realizar a validag¢io durante o treina-
mento a quantidade total do conjunto dados foi dividido em 80% para treinar e 20% para validagio.
Apés o retreinamento, a rede teve seu desempenho medido na etapa de validagio de 50000 imagens
(igual a0 que ocorreu com demais métodos). Ao terminar a validagdo, pode-se constatar que a rede
teve uma piora em seu funcionamento em rela¢o ao modelo usado para retreinar (tanto para 150
quanto para 300 épocas) e a entropia voltou a niveis elevados, perto das taxas da RN original.

Em outra tentativa, utilizamos um niimero menor de imagens: 17000 imagens ao invés de
34000. Novamente, os resultados nio foram bons. Porém, o retreinamento com 34000 imagens,
obteve-se um desempenho melhor em relagio ao anterior, com 17000. Provavelmente, o que ex-
plica o resultado ruim para o retreinamento ¢ a quantidade de imagens usadas. As redes ILSVRC
(que € o caso da Sgueezenet) sio treinadas originalmente por 1,28 milhdes de imagens, portanto,
para se ter um melhor desempenho no retreinamento, deve-se recorrer a um nimero similar ao

usado para treind-la originalmente.
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4 CONCLUSOES

Com o objetivo de realizar a compressio de RN’s sem retreinamento no formato ONNX, um
método para realizar a compressio dos pesos de uma RN foi apresentado. Foram estudados mé-
todos de quantizagio para a codificagio de RN’s. Em que as distribui¢oes dos pesos mostraram-se

similares a distribui¢io Laplaciana.

Para analisar o melhor método de quantizagio, foi realizada a comparagio entre as quantizagoes
uniforme, nio uniforme e deadzone. Entre as 10 redes usadas na etapa de validag¢io, somente a Mo-
bilenet ndo possui a melhor performance alcangada pelo método deadzone (0o modo de quantizagio
nio uniforme obteve o melhor resultado). Nessa rede o método de deadzone com & = 0.7 teve o
segundo melhor resultado. Para as demais redes, sempre obtivemos um melhor resultado pelos
métodos de deadzone (lembrando que midrise e midtread sio casos de quantizagio deadzone).

Em relagdo a compressio do modelo de classificagio de género, conseguiu-se uma diminuigio
de 22 bits de entropia, com um prejuizo de 0,54% na acurdcia. Para a rede classifica¢io de idade,
o funcionamento melhorou (acréscimo de 0,6% na acuricia) com a redugio de 21 bits de taxa.
Entretanto, para os oito modelos de classificagio de imagem, tanto para acc. Topl, quanto para
acc. Top5, alcangou-se um detrimento maximo de 0,8%. Originalmente, obteve-se uma média de
entropia de 23 bits/peso. Mas, apds a escolha da melhor compressio conseguiu-se uma média de
5,62 bits/peso. Quando considerado os 10 modelos, a entropia média vai de 22,896 bits/peso para
4,73. Por sua vez, a taxa de compressio 6tima para os modelos de classificagio de imagem foi no
minimo de 2,58 (Mobilenet) e no méximo de 17,5 (Caffenet), na média obteve-se aproximadamente
8. Para 0 modelo Gender - Googlenet, a CR alcangada foi de 23,7 e a CR para Age Googlenet ¢ de
33,33.

Quanto as limita¢oes deste trabalho, uma delas reside em nio poder realizar o retreinamento
da rede. Tal restri¢do ocorre devido ao alto poder computacional necessdrio para a execugdo do re-
treino. Muitas vezes, esse poder computacional nio é encontrado em equipamentos como celulares,
dispositivos IoT’s e sistemas embarcados. Outro ponto negativo do retreinamento ¢ a necessidade
de conhecimento prévio do modelo, uma vez que a etapa de treinamento exige o conhecimento do
dataset para ser usado. N6s também nos limitamos em utilizar modelos no formato ONNX, uma

vez que ele ¢ utilizado por virios arcabougos de DL e ML, permitindo a interoperabilidade.

Em suma, constata-se que nosso método ¢ eficaz para dar guias para a codificagio dos pesos
em um formato de intercimbio como o ONNX e realizar a compressio das RN’s sem necessitar o
retreino. A compressio sem retreinamento mostra-se vantajosa quando se verifica o tempo neces-
sario para compressdo com retreinamento, geralmente, muito maior que o tempo necessdrio pela
quantizagio dos pesos. Entretanto, os resultados alcangados por esse trabalho sio similares aos en-
contrados na literatura, com um grande diferencial de realizar a compressio para 10 modelos. Além

disso, o método apresenta-se apto para ser usado em diferentes redes e até mesmo para modelos com
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diversas funcionalidades. Cabe salientar que o método proposto consegue atingir os objetivos pro-
postos no MPEG-NRR [65] e alcanga os requisitos, expostos na se¢io 2.9.3, que sio necessdrios na
proposta do MPEG-NNR.

Para trabalhos futuros, sugere-se realizar a comparagio para mais RN’s, como as 4 redes que
nio foram usadas na etapa de validagdo. Outras redes com finalidades diversas (manipulagio de
imagem, autoencoder, compreensio de maquinas, entre outros) podem passar pelo método exposto
neste trabalho. Embora nio seja o foco da pesquisa, nio h4 restri¢do para combinagio do método
escolhido com outros. Ainda, é possivel combind-lo com os métodos de prunning [16], [17], [58]
ou outro método de compressio com retreinamento (citados na Se¢io 2.9.1). De outro lado, como
trabalhos futuros, para os modelos de classificagdo de imagem ILSVRC, indica-se usar as métricas
de ordenamento (Segdo 2.4.3) MRR (Se¢io 2.4.3.2) para ser utilizada como métrica (além de acq
e accs), calculando a posi¢io média em que o elemento ground truth é encontrado na saida do

modelo.
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