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ABSTRACT

Regions of interest (ROI) have been used in traditional image and video coding to improve im-
age quality in certain regions, like faces, at the expense of other areas. Nevertheless, ROI in point
cloud compression have not been properly addressed, nor has the creation of saliency maps. Both
points are addressed in this work. Itis hard to directly identify features such as faces in unconnected
point clouds and an alternative method to do so was developed. Orthographic projections in 2D
planes which are subject to well established computer vision algorithms are used. Once an image
region is identified, their pixels are back-projected onto the corresponding voxels. By repeating the
projections over many orientations, the information of the many back projections is fused to form
a collection of voxels believed to contain the ROI or to be the most salient. As an unsupervised
method, it was devised an algorithm to search the projection orientations for the best views, which
include temporal consistency information which is inherited from one frame to another. Face de-
tection algorithms, such as Viola-Jones, were used to determine the 2D ROI and well established
saliency map creation algorithms were also used in the 2D image case. In order to use ROI for com-
pression, it was developed an encoding strategy based on a modified distortion criterion that can
be applied to many coders and is naturally applicable to the region-adaptive hierarchical transform
(RAHT) based coder, which is being adapted into compression standards. In essence, bits (and
quality) are shifted towards the ROI from non-ROI areas, assuming non-ROI parts are visually
less important and have lower salience values. Results reveal large overall subjective improvement
by greatly improving the ROI at the expense of a small degradation of textured regions of lower

salience.

RESUMO

As regides de interesse (ROI) tém sido utilizadas na codificagio tradicional de imagens e videos
para melhorar a qualidade do quadro em certas regides, como rostos, em detrimento de outras
dreas. No entanto, a ROI na compressio de nuvens de pontos nio foi amplamente abordada, as-
sim como a criagio de mapas de saliéncia. Ambos os pontos sio abordados neste trabalho. E dificil
identificar diretamente atributos como rostos em nuvens de pontos esparsas e foi desenvolvido um
método alternativo para o fazer. Sdo utilizadas proje¢oes ortogrificas em planos 2D que sio sub-
metidas a algoritmos de visio computacional bem conhecidos. Uma vez identificada uma regido de
interesse, 0s seus pixels sio retroprojetados nos voxels correspondentes. Ao repetir as projegoes ao
longo de muitas vistas, a informagio de multiplas projegoes ¢ agregada para formar um conjunto
de voxels que se acredita conter a ROI ou serem os com maior valor de saliéncia. Como método

nio supervisionado, foi concebido um algoritmo para procurar as melhores vistas para projegoes,



utilizando informagio de consisténcia temporal que ¢ herdada de um quadro para outro. Foram
utilizados algoritmos de detec¢io facial, tais como Viola-Jones, para determinar a ROI 2D e foram
também utilizados algoritmos de criagio de mapas de saliéncias bem estabelecidos para imagens
bidimensionais. A fim de utilizar a ROI para compressio, foi desenvolvida uma estratégia de codi-
ficagio baseada num critério de distor¢io modificada que pode ser aplicado a muitos codificadores
e ¢ naturalmente aplicdvel ao codificador que utiliza a transformagio hierdrquica por regido adap-
tivel (RAHT). Na sua esséncia, os bits (e a qualidade) sio deslocados para a ROI a partir de 4reas
ni0-ROI, assumindo que as partes ndo-ROI sdo visualmente menos importantes e tém valores de
saliéncia inferiores. Os resultados revelam uma grande melhoria subjetiva global ao melhorar con-

sideravelmente o ROI 4 custa de uma pequena degradagio das regides de menor saliéncia.
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NOTATION AND DEFINITIONS

SYMBOLS
V The geometry of a point cloud, a list of 3D positions, i.e. occupied voxels.
C List of colors associated with the occupied voxels from V.

S Saliency level in a quantized saliency map.

xii



DEFINITIONS

octree A tree data structure in which each internal node has exactly eight chil-
dren.
pixel Picture element.
voxel Volume element.
ACRONYMS
1D One-dimension
2D Two-dimensions
3D Three-dimensions
4D Four-dimensions
AR Augmented reality
bpov Bits per occupied voxel
CfP Call for Proposals for Point Cloud Compression
DC Direct Current, represents coefficients with zero frequency
DCM Direct Coding Mode
tps Frames per second
G-PCC Geometry-based Point Cloud Compression
MPEG Moving Pictures Expert Group
MR Mixed reality
MSE Mean-Squared Error
MVUB Microsoft Voxelized Upper Body
PCC Point Cloud Compression
PSNR Peak Signal-to-Noise Ratio
RAHT Region-Adaptive Hierarchical Transform
RGB Red, Blue and Green color space
ROI Region of Interest
TMC13 Test Model Categories 1 and 3
VR Virtual Reality
YUV Luma, Chrominance blue, and Chrominance red color space, following

the BT.709 HDTYV standard



1 INTRODUCTION

In thelast few years, there was a great revolution in the possible ways to represent the world. Ad-
vances in computer graphics created technologies like virtual reality (VR ), augmented reality (AR)
and mixed reality (MR) [1]. These technologies use three-dimensional models to represent scenes
and objects. The 3D representations of scenes, or objects, can be obtained using scanning tech-
nologies such as optical laser-based, structured-light and LIDAR (Light Detection And Ranging),
or passive methods such as multi-view stereo.

Point clouds are acommon representation for the three-dimensional world. Nevertheless, point
clouds demand a large amount of resources since a typical point cloud may contain millions of
points. A major challenge is to efficiently transmit and/or store high-quality point clouds. More-
over, in order to facilitate inter-operation between production and consumption, compression
standards for point clouds are being devised by The Moving Picture Experts Group (MPEG) and
the Joint Photographic Experts Group (JPEG) [2], [3]. In 2017, MPEG issued a Call for Proposals
for Point Cloud Compression (PCC) [4].

One point cloud can be interpreted as the 3D equivalent of an image and a sequence of point
clouds can beinterpretas the 3D equivalent of a video. Like image and videos, different information
of the represented scene may be needed depending on the application, some methods to obtain it
are,

* Region of interest extraction;

* Colour segmentation;

* Object identification;

* Face recognition;

* Saliency map acquisition.

These are well known in the two-dimensional case [5]-[8]. Nevertheless, to obtain such infor-

mation from point clouds is still a challenge and the literature on such methods is still scarce.

1.1 MOTIVATION

Human vision relies on two mechanisms. In the first, basic "objects", like animals, faces, plants,
etc., are categorized, and in the second, perception of the objects is enriched through conscious
examination, such that the observer’s attention is concentrated on regions of interest (ROI) that
are relevant to the observer [9]. Like real scenes, point-cloud representations of scenes naturally



have ROI due to their salience. As a ROI attract attention, preserving its quality is important. For
images and video, ROI-driven compression, or ROI coding, is well studied [10].

Saliency maps in 2D have been studied for many years [8], [11]-[14]. They were developed with
the purpose of identifying, in images, regions that receive greater attention in human visualization.
Therefore, it is possible to use saliency maps as regions of interest.

However, for point clouds, the literature on saliency maps creation and ROI coding is scarce.

Thus, not only creating the ROl is challenging enough, but encoding it is still a problem.

1.2 PROBLEM STATEMENT

Many computer vision algorithms have been developed and are extensively studied in a two-
dimensional space, including those to create saliency maps, regions of interest and encode them.
However, the literature is scarce in this field for point clouds. Develop solutions that directly act on
a sparse three-dimensional space is challenging. It is possible to borrow solutions for the problem
in 2D space and adapt it to the 3D space.

1.3 OBJECTIVES

The main objectives of this work are to develop a framework that applies 2D computer vision
algorithms in a 3D sparse space and to use the results to propose a method for ROI coding a point
cloud.

1.4 DERIVED WORK

The research developed in this work resulted in the publication of four conference papers and
one award of best paper of signal processing in the conference. In order of publication the papers

are:

1. Point Cloud Compression Incorporating Region of Interest Coding, International Confer-
ence on Image Processing, 2019. [15]

2. Compressio de Nuvem de Pontos Incorporando Codificagio de Regido de Interesse, Sim-
p6sio Brasileiro de Telecomunicages e Processamento de Sinais, 2019. (Award winning pa-

per) [16]

3. Saliency Maps for Point Clouds, International Workshop on Multimedia Signal Processing,
2020. [17]



4. Mapa de Saliéncia para Nuvem de Pontos usando Proje¢es, Simpédsio Brasileiro de Teleco-
municagdes e Processamento de Sinais, 2020. [18]

1.5 MANUSCRIPT PRESENTATION

In Chapter 2, a literature review is presented in order to explain the concepts required to pro-
duce this work. Then, in Chapter 3, the methodology used is presented alongside with a detailed
explanation of the developed framework. The results obtained are discussed in Chapter 4. Finally,
in Chapter 5, general conclusions are given.



2 LITERATURE REVIEW

As well asimages and videos, point clouds often have Regions of Interest (ROI) that have special
meaning or relevance - for example, faces - for various applications in the areas of data compression,

computer vision, medical imaging, autonomous vehicle navigation, among others.

For images and videos, the use of regions of interest is already widespread in several areas [10],
[19]. However, for point clouds there are still some areas, such as compression, where the literature
available is scarce on the use of regions of interest. For face detection and object classification in

point clouds there is a vast literature available with different detection methods [20]-[24].

In this project, we have chosen a new approach for the detection of regions of interest in point
clouds. We opted for a 2D project-based calculation of the regions of interest.

2.1 POINT CLOUDS

With the arising of three-dimensional digital content, it was necessary to develop methods to
represent it that would allow its direct consumption by humans. One of the methods developed
to perform such representation is the point cloud.

A point cloudisaset of points in space represented in a three-dimensional (X, Y, Z) coordinate
system. It commonly serves the purpose of representing the outer surface of an object or scene. An
example of a 3D captured object in its point cloud format is shown in Figure 2.1.

Figure 2.1: Point Clouds RomanOilLight [25] and Stanford Bunny [26], [27].

Point clouds consist of geometry and all its attributes [28]. The geometric part of a point cloud



with N points, can be described by a set J” containing the coordinates of all points, such that:

(Xl, 215 Zl)

V=Av,02,...,00} = (2 )fz, ) (2.1)

(%25 V> 2n)
wheren =1,..., N and v; = (x;, 7;, z;) defines the position of the point p;.

Attributes can be represented in a similar way by a set C where each entry in that set has D
attributes per point:
(dlh ey ﬂlD)
(a21,...,a2D)
C={e,c0, 500} = , (2.2)
(ﬂnl) ey ﬂnD)

Commonly, attributes include color components, but may also include transparency, normal
vectors, motion vectors, and so forth. Once the geometry is given, the attributes may be thought
of as a signal defined on a set of points.

The pointin the point cloud is the primitive notion on which geometry is built. It has nolength,
area or volume, it is used as a unique location in Euclidean space. Thus, for rendering, points are
commonly represented as spheres. Employing voxelized point clouds (VPC) is more convenient for

representing such data.

A voxel is the 3D extension of a pixel, while the pixel is a square and the fundamental element
of a 2D image, the voxel is a cube and is the fundamental element of a three-dimensional object.

We assume that the object represented is contained in a cube of size L x L X L, where L is a
positive integer. We can divide this cube into the three dimensions L times, obtaining L3 cubes
of dimension 1 X 1 x 1, which are by definition voxels. The advantage of such approach is that the
position of each voxel is discrete rather than continuous and the fundamental element is no longer

dimensionless.

Different from the 2D image case, in the 3D representation by voxels the vast majority of them
must be transparent. Also, those voxels in the interior of the objects we are representing may also
be transparent because normal techniques can not capture information in those regions and/or be-
cause that information is not relevant, reducing the number of data required to represent an image.
Those voxels that are not transparent are referred as occupied voxels and those that are transparent

are commonly referred as non occupied voxels.

2.1.1 OCTREE

In computer science, a tree is a data structure in which its elements, called nodes, hierarchically

related to each other. They are composed of an initial node, called the root, plus its children nodes.



Each subsequent node can have one or more children. When a node has no children, it is called a
leaf node [29].

An octree is a tree data structure in which each internal node has exactly eight children [30], it
is the 3D extension of a 2D quad-tree. They are most often used to partition a three-dimensional
space and have been shown to be very efficient when encoding a point cloud [31].

To explain the octree scanning process, illustrate in Figure 2.2, we start with a cube with dimen-
sions L X L x L where ours voxels lay. Then we have a list of voxels inside our cube, the cube is then
divided in half along one of its dimensions (i.e. x axis). At this stage we say that we travelled one
level on this octree. The list of occupied voxels is divided in two lists: one for the voxels laying in
the leftmost half and another list for the rightmost half. We continue our division along another
dimension ( y axis), dividing in four regions and producing 4 voxe/ lists. Finally, repeating the pro-
cess for the remaining dimension (z axis), we obtain 8 cubes similar to the original one, but with a
width of L/2. At this stage we say that we have travelled one depth on this octree, where 3 levels
are the equivalent of 1 depth.

We can continue with this process, further dividing the space. At depth d we will have cubes
of size L/24. If L is chosen to be a power of 2, at the depth d where 24 = W the resulting cubes
will have size 1 x 1 X 1 and will accommodate one single voxel. For this reason, for most of voxelized
point clouds L is chosen to be a power of 2. The higher the value of L, the more detailed the point
cloud can be as it comports more voxels.

depth 1
level0  level 1 level 2 level3 ' level 4

Figure 2.2: Octree scanning of voxels [32].

2.2 REGION-ADAPTIVE HIERARCHICAL TRANSFORM (RAHT)

Most point cloud codecs found in the literature first encode the geometry, and then encode
the attributes conditioned on the geometry. Typical approaches to attribute coding include trans-
form coding using the Graph Fourier Transform (GFT) [33]-[38], the Gaussian Process Trans-
form (GPT, which is the KLT of a Gaussian Process) [39], [40], and the Region-Adaptive Hi-
erarchical Transform (RAHT) [28], [41]. RAHT, unlike the GFT or GPT, does not require an
eigen-decomposition, and has been one of the transforms initially adopted into MPEG PCC [2].



The RAHT is a hierarchical orthogonal subband transform. It is a variation of the Haar trans-
form that takes the data sparsity into account, it accomplishes this by using adaptive weights to
consider different regions with empty or occupied voxels.

In the RAHT the weight is set to be 1 to all occupied voxels and 0 for void voxels initially, then
the voxels are combined two by two, along each dimension. Let us denote }Z.g . the color of the

/>

voxel at the position x = 7, y = j, 2 = k atlevel / and by w' , its weight. Along the x-dimension,
Ve
the RAHT is given by:

4
Ew || a b || e (2.3)
G€ - _b a F€+1 > *
z')j’/e 2l’+1,]’,k
where . .
+ +
2 21,7,k 2 2i+1,7,k
= = >
4 wi*l C+1 , b wi*t 0+1 4,62 0. (24)
24,7,k 2i+1, 7,k 24,7,k 2i+1, 7,k

and at least one of the voxels in the pair is occupied. The inverse transform is given by:

(+1 4
};z',j,/e _ a —b Pz",j,/e (2 5)
EfH b a G! ' '
2i+1,7,k 7,7,k

In RAHT the high-pass coefficient is not subject to further processing along the other dimen-
sion. They are sent directly to the next compression steps. The low-pass coefhicients, on the other
hand, are treated as new voxels. The process is repeated along each dimension (x, y and z) until
reaching the level where only one low-pass coefficient remains, the DC coefficient. The DC coef-
ficient is sent to the decoder along with all the high-pass coefficients generated in the process. In
figure 2.3 is shown a diagram for the RAHT implementation fora 2 X 2 x 2 block.

low-pass high-pass RAHT level

w=1 w=1 w=1 w=1 w=0 w=1 w=1 w=0

3

Figure 2.3: RAHT diagram for a 2 X 2 x 2 block. [42]



2.3 REGION OF INTEREST

A Region of Interest (ROI) is defined as samples of a data set identified for a particular purpose
[19]. The concept of a ROI is commonly used in many application areas, for example, computer
vision, medical imaging, optical character recognition (OCR), geographical information systems
and others. In computer vision the ROI usually defines the limits of the area under consideration

of the image or video.

The region of interest can be specified in a one-dimensional, two-dimensional (see Fig.2.4 for an
example), three-dimensional or four-dimensional dataset. Examples of regions of interest of each

of these types are given below.

* 1D data set: a frequency interval of a waveform;
* 2D data set: the contour of an object in an image;
* 3D data set: the contour of a surface of an object in a volume;

* 4D data set: the contour of an object during a time interval in a volume of time.

A ROl is an extra information expressed in a structured form that needs to be encoded. It
can usually be encoded as an integral part of the data set as a masking value which tags individual
data cells; as a graphic information such as drawing elements; as a set of spatial and/or temporal

coordinates.

Regions of interest can be generated manually, semi-automatically, or automatically via soft-

ware. To distinguish:
* Manual ROI: the user manually defines an area using a keyboard, mouse or other accessory
that enables the delimitation;

* Semi-automatic ROI: the software assists the user in drawing or delimits the region based on

parameters provided by the user;
* Automatic ROI: the software determines the boundary criteria without user intervention.
Regions of interest are widely used in image compression, such as in the standard /PEG2000

[43], and in videos [10]. With the detection of regions of interest in point clouds it is possible to
use it to preserve the quality of some regions in the compression process.

2.4 SALIENCY MAPS

Saliency map creation can be considered one of the ways of segmenting images and videos. In
computer vision, segmenting an image is the process of dividing a digital image into several seg-

ments consisting of groups of pixels. The goal of this process is to create a simplified visualization



Figure 2.4: Region of Interest highlighted in the image by yellow rectang]es.

or to change the representation of the image so that it has a more relevant meaning to the user. Seg-
mentation in images is typically used to find objects or edges [13]. A saliency map is a representation
of an image that shows the unique quality of each pixel [44].

Saliency maps in 2D images have been studied for many years [8], [11]-[14], including technolo-
gies such as neural networks and others. They were developed with the purpose of identifying, in

images, regions that receive greater attention in human visualization.

One of the first groups of neuroscientists to study and define a saliency map states in their work
[45], [46] that the purpose of a saliency map is to represent the visibility, or salience, at all locations
in the visual field by a scalar quantity and to guide the selection of observed locations, based on the
spatial distribution of the salience.

The salience is defined as how different a location is from its surroundings in terms of color,
orientation, movement and depth.

Thus, it can be summarized that the general idea of a saliency map is that it is a topographically
organized map that indicates the location of salient objects in the visual field and not what such
objects are. Therefore, a saliency map created from a digital image should be able to compute the



visibility of each pixel of the image and select the areas that have the most prominence [46]. In
Figure 2.5, it is shown an image and its corresponding saliency map.

(a) Input image. (b) Saliency map.

Figure 2.5: Example of a saliency map. [47].

2.5 FACE DETECTION ALGORITHMS

There are many different algorithms for face detection in the two-dimensional scenario of com-
puter vision. In this work, we opted to use the well known Viola-Jones Algorithm [S] and the
Facial Landmarks Algorithm described in [48]. It is not the objective of this work compare the
two different algorithms, each one was used associated with a different method of adapting the 2D
information for the 3D point clouds.

2.5.1 THE VIOLA-JONES ALGORITHM

The Viola-Jones object detection framework was the first object detection framework to pro-

vide competitive real-time object detection rates. It was proposed by Paul Viola and Michael Jones
in 2001 [S].

The problem to be solved is the detection of faces in an image, a task easily performed by a
human being, but that for a computer requires precise instructions and constraints. To reduce
complexity, the framework requires full-view frontal faces, i.e. the face must point at the camera
and it cannot be inclined.

This framework is also known for its low computational cost and high rate of true positives

with low false positives.
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The Viola-Jones algorithm has some attributes that qualify it as a good detection algorithm,
they are:

* Robustness: high detection rate with few false positives and negatives;
* Real-time: it can detect faces at 15 frames per second;

* Face detection only: the goal is to decide between faces and non-faces.
It runs in three different stages:

1. Feature Selection;
2. AdaBoost Training;

3. Cascade of classifiers.

A brief description of each stage of the algorithm is provided in the following.

2.5.1.1 FEATURE SELECTION

The object detection procedure of the algorithm classifies images based on the value of sim-
ple features, see figure 2.6. The main motivation for using features instead of pixels directly is that
features encode ad-hoc domain knowledge which is difficult to learn using a finite amount of train-
ing data. Another justification by the authors for using features was that a features-based system is
much faster than a pixel-based system. The features used have similarities with Haar basis functions
that have been used in other articles for object detection [49].

The authors used what was called an image integral to rapidly compute rectangular features. A
point (x, y) in an integral image contains the sum of the pixels above and to the left of it, as shown
in equation 2.6, where 77(x, y) is the integral image and 7(x, y) is the original image.

ii(x, y) = Z i (x, ) (2.6)

x'<x,y'<y
Using equations 2.7 and 2.8, the integral image can be calculated with just one pass in the original
image.

s(x, ) =5(x, y = 1) +i(x, y) (2.7)

1i(x,y) =ii(x =1, ) + 5(x, y) (2.8)
where s(x, y) is the cumulative row sum, s(x, —1) = 0 and 77(-1, y) = 0.

The use of integral images is important because it allows that any rectangular sum can be calcu-
lated with only four array references. See figure 2.7.
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D

Figure 2.6: Example of feature rectangles relative to the detection window. The sum of pixels in the white rectangle is

subtracted from the sum of pixels in the gray rectangle [S0].

Figure 2.7: The sum of the pixels within rectangle D can be computed with four array references. The value of the
integral image at location 1 is the sum of the pixels in rectangle 4. The value at location 2 is 4 + B,at3is 4 + C, and
at4is A+ B+ C + D. The sum within D can be computed as 4 + 1 — (2 + 3) [50].
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2.5.1.2 ADABOOST TRAINING

The system implemented by Viola and Jones uses a variant of AdaBoost to select the features and
train the classifiers [51]. In its original form, the AdaBoost learning algorithm is used to improve
the performance of a simple learning algorithm. It does this by combining a collection of weak
classification functions to build a strong classifier.

As there are more than 180 thousand rectangle features associated with each image sub-window,
it is proposed the hypothesis that a small number of these features can be combined to form an
effective classifier. The biggest challenge is to find such features.

To do this, the authors designed the weak learning algorithm to select the single rectangle feature
that best separates the positive and negative examples. For each feature, it is determined the optimal
threshold classification function, such that the minimum number of examples are misclassified. A
weak classifier /;(x) is made of an feature f;, a threshold 8; and a parity p; indicating the direction
of the inequality sign, as seen in Equation 2.9.

0 otherwise

bi(x) = { 1 if pfi(x) < ps9 (2.9)

A simplified version of the learning algorithm is presented as follows:
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Algorithm 1: The AdaBoost algorithm for classifier learning

Result: Selection of one feature from all the potential features.
1 Given examples images (x1, %1) » . . -, (¥4, ¥), where y; = 0,1 for negative and positive
examples respectively;
2 Initialize weights wy; = ﬁ, % to y; = 0,1, respectively, where 7 and / are the number of

negatives and positives respectively;
sforr=1,...,7do

4 Normalize the weights
Wi
W — —=5—— (2.10)
ZJZI wl)_]‘
so that w; is a probability distribution;
5 for cach feature j do
6 Train a classifier /oj which is restricted to using a single feature;
7 Evaluate the error with respect to wy,
€ = Z wi |b (x:) = i (2.11)
-
8 end
9 Choose the classifier, 4;, with the lowest error &;;
10 Update the weights:
Wil = Wi }_6[ (212)
where ¢; = 0 if example x; = 0 is classified correctly, ¢; = 1 otherwise and &, = 1?513
1 end
12 The final strong classifier is:
T 1 7T
b(x) — 1 thl “Z}?t(x) = 2 thl At (213)
0 otherwise

where 2; = log ﬂ%;

2.5.1.3 CASCADE OF CLASSIFIERS

To be able to improve face detection rates and decrease false positive rates, the authors have
developed a system of cascading classifiers so that simpler classifiers are used to reject most negative

images before more complex classifiers are used to achieve low false positive rates.

The general form of the detection process is that of a degenerate decision tree, as it can be seen
in Figure 2.8. A positive result of the first classifier triggers the evaluation by a second classifier,
that as also adjusted to reach high detection rates. A positive result in the second classifier triggers
the evaluation by the next classifier and so on. A negative result in any link of the chain leads to

14



immediate rejection of the sub-window.
The classifiers were built, using AdaBoost, adjusting the threshold to minimize false negatives.

Cascading the classifiers allows a lower computational cost since most of the evaluated sub-
windows will have negative results, so they are eliminated at the beginning of the processing, avoid-
ing as much as possible that one sub-window is evaluated by all the classifiers.

All sub-windows

Face detection

| Rejected sub-window |

Figure 2.8: Cascaded classifiers diagram.

2.5.2 THE FACIAL LANDMARKS ALGORITHM

The paper written by V. Kazemi and J. Sullivan [48] presents a method for detecting faces even
if they are not facing the camera in a upfront position. They demonstrate how an ensemble of
regression trees can be used to estimate the face landmark positions directly from a sparse subset of

pixel intensities in a computationally efficient way.

Similar to previous works this method uses a cascade of regressors and some facial landmarks,

or features, to identify the faces in an image. A brief description of the framework is given bellow.

2.5.2.1 CASCADE OF REGRESSORS

Let x, € R2 be the x, y-coordinates of the 7th facial landmark of an image 7. Then the vector

T A
S= (XIT ) Xg ey XPT ) € R?? denotes the coordinates of all the p facial landmarks in 7. S is used
to denote the estimate of S. Each regressor, 74, in the cascade predicts an update value from the

image and S that is added to the current S estimate to improve it:
§+) — § 4 5. (I, S“)) . (2.14)

The main point of the cascade in that the regressor makes its predictions based on features com-
puted from 7 and indexed relative to the currentS. To train each 7, itis used a gradient tree boosting
algorithm with a sum of square error loss [52].

Assuming a training data (11, 81), . . ., (15, S,,) where I; represents a face image and S, its shape

vector. To learn the first regression function ry, it is created data triplets of a face image, an initial
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shape estimate and the target update step ([7,1., S(.O), ASZ(.O)), with that:

w; €{1,...,n}
8 € {Sy,...,8,}\S,, and (2.15)
ASY =s,, — 8

fori=1,..., N and N = nR where R is the number of initializations used per image. From this
data the regression function 7y is learned using gradient tree boosting with a sum of square error
loss. The set of training triplets is then updated to provide the training data, (Im, Sgl), ASED), for
the next regressor 7 in the cascade by setting

[ 7

$ =801, (1,81 e
Asff+1) — Szl. _ Sfl’+1)

with £ = 0. This process is iterated until a cascade of 7" regressors 7o, 71, . . . , 771 is learned which
when combined give a sufficient level of accuracy. Included in the statement of the algorithm is a
learning rate parameter, or shrinkage factor, 0 < » < 1. The algorithm in 2 summarizes the process

of learning each regressor in the cascade.

Algorithm 2: Learning 7, in the cascade.

Result: Regressor 7,

. N
1 Have training data {(17,1., SZ(.I), ASEI))} )
2 0<v<l;
3 Set

\ N 2
ol = arg min C = .
018 i S st o
}/GRZIJ 7=1
fork=1,...,K do
4 for cach fearure j do
5 Set
re=ASY — £y (l,fl., Sff)) (2.18)

6 end

7 Fit a regression tree to the targets r;;, giving a weak regression function gy, ([ ,8¢ )) 5

8 Update

fi(1,89) = fia (1,89) +vg (1,89)) (2.19)

9 end
10 Output 7, ([,S(‘“)) =fx ([,S(”);
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2.5.2.2 TREE-BASED REGRESSOR

The core of each regression function 7, is the tree based regressors fit to the residual targets
during the gradient boosting algorithm. At each split node in the regression tree a decision is made
based on thresholding the difference between the intensities of two pixels. The pixels used in the
test are at positions u and v when defined in the coordinate system of the mean shape. For a face
image with an arbitrary shape, the points that have the same position relative to the shape as u and
v have to the mean shape are indexed.

Let ky be the index of the facial landmark in the mean shape that is closest to u and define its

offset from u as:
0Ky =U— Xy, . (2.20)

For S, defined in image 7/, the position in J; that is qualitatively similar to u in the mean shape

image is described by:
1
u =X, + —RZ-Té\Xu, (2.21)
S
where s5; and R; are the scale and rotation matrix of the similarity transform which transforms S,

to 8. The scale and rotation are used to minimize the sum of squares between the mean shape facial

landmark X;, and those of the warped shape, that is given by:
? 2
2o[® - (iR +)| (2.22)
J=1

In the end, each splitis a decision involving three parameters § = (7, u, v) and is applied to each

training and test example as shown:

b (Jm,é@,a) - { U L () = I, (V) > 7 (2.23)

! 0 otherwise

where u’ and v’ are defined using the scale and rotation matrix which best warp Sf.t) to S.

The results presented by the authors show that the framework developed is capable of detecting
faces even when they are not facing the camera in an upfront position or when there is an occlusion

of some part of the face. Some of the results can be seen in Figure 2.9.

2.6 RELATED WORK

There are some previous work on determining saliency maps and detecting faces in 3D objects
[20], [21], [53].

The saliency map creation proposed by T. Zheng ez al. [53] is based on the importance of the
point for a model-recognition loss. Thus, their saliency map explicitly explains which points are the
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key for model recognition. Furthermore, aggregations of highly-scored points indicate important
segments in a point cloud.

The method developed by P. Nair ez /. [20] is based on a 3D point distribution model (PDM),
which is fitted with structure and position information, and candidate points. Face detection is
performed by classifying transformations between model points and candidate vertices based on
the upper bound of the deviation of the model parameters. In the paper a 99.6% face detection
rate is reported. The method was developed to work with face meshes and rely on curvature-based

feature maps, so it is not directly applicable on point clouds.

In the work of A. Colombo ez al. [21] a feature-based approach is combined with a holistic
approach for three-dimensional face detection. Features such as the eyes and nose are detected
through an analysis of the surface curvature. Each candidate trio of eye and nose pair is processed by
a classifier trained to distinguish between faces and non-faces. The results presented by the author
indicate a hit rate of 96.85%.

There is no work available in the literature regarding the encoding of point clouds using regions
of interest and neither about a projection-based region of interest creation for point clouds. With
this, the method proposed aggregates these two ideas.
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[

Figure 2.9: Results presented in
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3 PROPOSED METHOD

This chapter presents the methodology of the work described in this dissertation as well as a
detailed description of the algorithms used to implement the final solution.

We divided our study into two parts:

1. Face detection as a ROl in a point cloud;

(a) Single frame;

(b) Frame sequence;

2. Saliency map calculation as a soft ROI in a point cloud.

Both types of regions of interest were further used to encode the point clouds. The face detection
method was divided in two different approaches, the single frame and the frame sequence, which

are detailed next:

* Region of interest detection in a single frame of a point cloud: this method searches for
the region of interest in only one frame of a point cloud. The input of this method is a vox-
elized point cloud from which no information about the location of the ROI or its existence
is available. Its output is the locality of the voxels of the ROI obtained.

* Region of interest detection in a sequence of frames of a point cloud: This method
searches for the ROI in a frame sequence of a point clouds making use of temporal con-
sistency to optimize the search and to decrease the computational cost. The input of this
method is a frame sequence of a voxelized point cloud where there is no information about
the location of the ROI or its existence in the first frame. The information of the previous
processed frame is used to process the current frame. Outputs the location of the voxels in
the obtained ROI for each frame.

The diagram in Figure 3.1 represents the developed algorithm for ROI detection and extraction
in a point cloud.
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( Begin )

Load point cloud.

Determine type
of desired
region of interest.

Elevation == 8max

Azimuth == gmax

Map the 3D voxels
into a plane along
the direction (8, ¢).

Mark correspondent
voxels as candidates
to the ROL.

\ 4
Azimuth++ i(7

Select voxels of

the ROl based on /<
the threshold. /

( End )

Figure 3.1: Diagram of the proposed algorithm for region of interest detection in point clouds.
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3.1 ROI-WEIGHTED DISTORTION MEASURE AND MEASURE-THEORETIC RAHT

In lossy compression, artefacts introduced in some regions can highly influence the subjective

perception of quality. The squared error may not correlate well with subjective perception of qual-
ity.
Let a generic attribute X = {X;} be considered, where X; is the attribute value associated with

the 7-th voxel of a total of N occupied voxels, and let X = {X;} be its reconstruction. A better way
to account for the relevance is to consider a weighted squared error, defined as:

dX,X) = ) wi(X; - X)), (31

where w; are the weights associated with each voxel and reflects its semantic or perceptual impor-

tance.

A region of interest (ROI) can be defined via the weights w;. A natural choice is to set w; =1
for all voxels outside the ROI and w; > 1 for voxels inside the ROI. A codec that minimizes this
distortion measure subject to a rate constraint will tend to reproduce X; as X; with squared error
inversely proportional to w;. It is also possible to define a smooth transition between the ROI
border or define multiple ROI with different weights.

The weights can be used to define a measure on the set of voxels composing the point cloud. A
measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively
interpreted as its size. As each voxel has a weight associated with it, we define the measure of a subset
S of voxels by:

()= ) wi. (32)
€S
The measure is non-negative, as all weights are non-negative and the measure of two disjoint subsets

is equal to the sum of their measure.

The definition of measure (3.2) induces the definition of the integral,
[ ot = 3 wif ) (33)

because J
d_i :Zwié\ (|x—xi|2) (3.4)

since voxels are dispersed in discrete positions x;.

The definition of the integral (3.3) in turn induces the definition of the inner product,
(Fo0) = [ F0gdutn = Y wif (x g (w0 (3.5)

which in turn induces the definitions of orthogonality, f L ¢ & (f, g) = 0, and norm, ||f|| =
«f NEES Altogether, these induce a Hilbert space. The weighted squared error given by (3.1) is
precisely the squared norm ||/ — f ||? of this Hilbert space, where f; = X, and ]é = X..
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RAHT is region-adaptive to remain orthonormal regardless the locations of the points. Re-
cently RAHT has been shown to be interpretable as a separable piecewise constant spline wavelet
that is orthonormal with respect to the inner product (£, ¢) defined by the weights w; [54]. Thus,
if the weights are set to the weights in the ROI-weighted distortion measure, the transform will
remain orthonormal, and moreover uniform scalar quantization of the transform coefficients with
the quantization stepsize set to a constant will minimize the ROI-weighted distortion measure, at
least at high rates.

To be specific, let R® be uniformly partitioned into cubes of size 277 X 277 x 277, half-cubes
of size 27 x 27" x 2-(m*1) and quarter-cubes of size 27 X 2704 5 2=+ and let Famy Famsts
and ¥3,,42 be the spaces of all functions f; : R3 — R that are piecewise constant on these blocks,
for ¢ = 3m, 3m + 1, and 3m + 2, respectively. The nested sequence of function spaces ¥y C 71 C

- C Fo € Fr41 C -+ - approximates ever more finely (with respect to the norm, i.e., the weighted

squared error) the space of piecewise continuous functions.

Now let By, denote a block at level ¢ indexed by 7, let 15, (x) be its indicator function, and let
we , = u(By,,) be its measure. Then % is spanned by the basis functions

Pon(X) =w, lBM(x)a (3.6)

which are orthogonal to each other and are normalized with respect to the inner product and norm
induced by the weighted measure. Similarly, let By, ,,, and By, ,, denote the sub-blocks of By,
and let Gy be the orthogonal complement of % in %,;. Then Gy is spanned by the basis functions

-1 -1
“Wep nole’H’”O (X) + W1 7 lB€+1,ﬂ1 (X)

-1 -1/2
(w€+1 S0 tw €+1 nl) /

Yo (X) = (3.7)

which are orthogonal to each other and to the functions (3.6), and are normalized, as can be verified
by the diligent reader. Thus any function fy,; € %41 can be written as:

fr1(®) = > Fonou(®) + " Grota(x), (3.8)

where the 7, = {fo11, ¢¢,,) are known as low-pass coefficients and the Gy, = {f741, ¥7,,) are known
as high-pass coefficients. After some algebraic manipulation, (3.6) and (3.7) can be expressed re-
cursively as the "two-scale equations”

¢€,n (X) = d¢€+l,n0 + b¢€+1,n1 (39)
%&n (X) = _b¢€+1,n0 + ﬂ¢€+1,n1: (310)
where 2 = ~\L/”ﬂ0 nd b = ‘ e . Substituting these into the definitions of /7, and Gy, we
obtain
Fé,}’l — a b Fé+1,7l0 , (311)
G(,}’l _b a Fé+1,}’l1
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which is a Givens rotation whose angle of rotation depends on the relative weights of the sub-
blocks. RAHT applies (3.11) recursively to expand f7 € ¥7 as

L-1
i) =) Fagoa(®)+ D> Grata(x), (3.12)

(=0 n
where L is chosen large enough so that each cube B/ ,, contains at most a single point, say x; with
value /; = £(x;). The number of coefhicients is N, i.e., RAHT is critically sampled. (For details, see
[54].) Note that ¢; ,(x) = wl._l/ZlBL,n (x), and therefore 7, = (f, ¢r.n) = w}/zfz-. This generalizes
RAHT in [40], for which w; = 1 forall points 7 =1,..., N.

The RAHT coefficients are uniformly scalar quantized with stepsizes A(fo,,) and A(Gy,,),
¢ =0,...,L — 1, and are entropy coded. Because Givens rotations are orthonormal, norm is
preserved. Thus the squared quantization error is

L-1 N
DB =F)+ ) > (Geu=Gen) = Y wilfi = )7, (3.13)
n =1

(=0 n
which is the same as the ROI-weighted distortion measure. Since a constant step-size A = Q¢
minimizes the squared quantization error subject to an entropy constraint, at least at high rates [55],
setting the step-sizes of the RAHT coefhicients to a constant also minimizes the ROI-weighted
distortion measure desired for ROI coding [15].

In summary, with RAHT, at the encoder, voxels in ROI should have initial weights set to w; = w
and initial attributes scaled by vw. The decoder should scale back the attributes.

3.2 PROJECTION-BASED ALGORITHM

Many computer vision algorithms have been extensively studied for the 2D image case, includ-
ing those to create saliency maps and for face recognition. For point clouds, however, literature in
the subject is scarce. Our goal is to find ROI such as faces and saliency maps in unstructured point
clouds. In these, relative position among voxels, normals etc. may have to be derived, and efficient
algorithms for feature identification are still being developed [56]-[58].

Our solution uses projections onto 2D images, in order to recognize the features in 2D space,
and to map back the image pixels to the 3D voxels. In other words, computer vision tasks on 3D
point clouds are performed on a 2D projection with the aid of a back-projection of 2D pixels onto
3D voxels. The data from many projections are fused to find the voxels of interest to us. The idea is
illustrated in Figures 3.2 and 3.3.

3.2.1 POINT CLOUD PROJECTION

Orthographic projection is a type of parallel projection where the projection lines are drawn

parallel to each other and perpendicular to the chosen plane of projection.
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Point Cloud

2D region
detected

/fD Projection

2D Projecti 4

Figure 3.2: Region of interest detection in point clouds using projections and image identification algorithms. De-

tected pixels are mapped back onto voxels.

The algorithm begins by orthographically projecting the point cloud P onto a 2D plane /. If
we imagine a voxel as a 3D cube and a pixel as a square element the size of the cube side, and, if we
orthogonally project the cube into any of its six faces, we may be able to uniquely map the voxe/
face to a pixel in the 2D projection plane. Hence, the 2 — I mapping would be reversible, Fig.
3.4 illustrates this case.

If the projection is at any other oblique direction, the cube projection would not be a square,
buta more complex polygon. Such a projection would not fitinto a square pixel and would partially
project onto many adjacent pixels. In order to cope with that situation, there are many solutions
with varying degrees of accuracy and complexity. In P — [ and I — P, one solution is to compute
the voxel or pixel color by linear combinations of the various partial projections. An alternative is to
increase resolution by replicating voxels and pixels and simply assigning the voxel color to the pixel
with the largest corresponding projection area. In the back-projection / — P we can mark the
voxel whose center is the closest to the projection line from the center of a marked pixel in the 2D
projection plane. After all voxels are marked, the point cloud should be reduced (down-sampled or
averaged) to the correct resolution. Similar interpolation issues arise if one does not assume cubic
voxels nor square pixels. Nevertheless, one should make sure it is possible to map voxels to pixels
and to map specific pixels back to voxels.

The projection-based ROI determination algorithm works as:

* Map the 3D voxels into a plane along the direction (8, ¢), where —=90° < 6 < +90° is the
elevation and 0° < ¢ < 360° is the azimuth, see Fig 3.5.
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Point Cloud 2D Projection Saliency Map

Figure 3.3: Steps for the creation of a saliency map using two-dimensional projection of a point cloud. Saliency maps

are derived for images and the saliency pixels are mapped back onto voxels.

* Identify the ROI in 2D, marking the pixels that belong to it.

* Map the marked pixels back to the voxels in 3D. As a pixel may map to multiple voxels, one
may use rounding or other decision process.

3.2.2 FACE DETECTION

With the algorithm described in section 3.2.1, given a voxelized point cloud and a pair (&, ¢) it
is obtained a set of identified (marked) voxels. However, many directions are tested, since it is not
known which orientation would be the best to identify the feature. The (8, ¢) space is scanned by
spanning & from 0,,;, t0 0,4 in steps of A0 and ¢ from ¢y, tO B4y in steps of A, If we have
Nj elevation and Ny azimuth points, we end with N, = Ny Ny projection and back-projection

cycles.

A region of interest is not always successfully identified. For example, only at a few viewpoints
can we identify faces of a person. Let us say that out of NN, projections we identify the ROI Nz
times. Then for each of the N projection cycles, we record the voxels that are marked "of inter-
est”. If a given voxel is marked "of interest” /N; times, we will then consider that particular voxe/ as
belonging to the ROIL if N;/Ngr > 7, where 7 is a given threshold. This method is information
fusion by voting on voxels.

The algorithm is generic in nature but the focus here is in identifying faces of human point
clouds as regions of interest. For that, it is used the algorithms described in section 2.5 for face

detection in images. This work is not about new face detection algorithms and we simply used well
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Figure 3.4: Orthogonal projections of a point cloud in three different views [59].

established algorithms to keep the focus on the projections and the compression. In the examples
in this work, we used 0,,;, = =70°, Opax = 90°, Gmin = 0°, Grmax = 359°, A0 = Ap = 10°.
Hence, Ny = 17 and Ny = 36, so that N, = 612 projections are performed for each point cloud.
Detection is made with 7 = 0.3, i.e. the voxel is assigned as a face voxel if it has been identified as
such in at least 30% of the projections.

Face detection may be problematic when viewing the face sideways, which causes gaps in the
face region of interest in the cheeks and ears. To overcome this problem one can dilate the ROI mask
in a special way. Each voxel in an integer grid can be addressed by its Morton code [60]. Morton
codes are obtained by interleaving the binary representation of the voxel x yz integer coordinates,
from the most to the least significant bit. If the point cloud has depth 4, the Morton code has 34
bits. The first 3(d — w) bits of the code are an address to cubes of 2% x 2% x 2% voxels.

The dilation algorithm works with cubes of width 2, such that if a voxe/ in the cube is deemed
in the region of interest, all other occupied voxels in the cube are also made part of the ROI. These
other voxels in the cube are easily found since they all share the same 3(d — w) bits of their Morton
codes. In other words, if a voxel is deemed in the ROI all other voxels with the same 3(d — w) bits
prefix in their Morton codes are also made part of the ROI. Fig. 3.6 shows results of expanding the
region of interest using different widths (2%).

In summary, the algorithm can be described as in Alg. 3.
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Elevation

Azimuth

Figure 3.5: Representation of a point cloud and its elevation angle and azimuth.

(a) width = 1 (b) width = 2 (c) width = 4 (d) width = 8

Figure 3.6: Artefacts in the region of interest identification caused by the obliquity of the projections and the Morton-
code-based dilation for different cube widths.

Algorithm 3: Detecting the region of interest in a point cloud.
Result: Voxels belonging to the desired ROI
1 ford=20,,,:A68:0,,.do

2 | ford = uin: AP Ppay do

3 Project the point cloud onto direction (6, ¢);

4 Run 2D object detection algorithm (e.g. Viola-Jones);
s Back-project "marked"” pixels as "marked" voxels;

6 Count Np;

7 Count N; for each voxel;

s | end

9 end

10 for each voxel do

1 Mark itas ROILif N;/Ng > 7;

12 end

13 Dilate ROI using blocks (e.g. 8-sided, or w = 3);
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3.2.3 SALIENCY MAP CREATION

The method developed for the saliency map creation for point clouds is very similar to the one
described in section 3.2.2 for face detection in point clouds. Since the algorithm described in sec-
tion 3.2.1 is generic by nature, the algorithm developed by Walther and Koch [61] was used to con-
struct the saliency maps in the 2D projections. The same parameters of 0,,;, = =70°, 8,54, = 90°,
Pmin = 0°, Gmax = 359° and AG = Ag = 10° were used, hence we perform N, = 612 projections
for each point cloud, resulting in the same number of 2D saliency maps.

After each projection, the salience value of each pixel is re-projected onto the corresponding
voxel and added to the already existing voxe/ salience value. After the 612 projections, the salience
value of a voxel is the sum of the salience values of the corresponding pixels in each projection.
This method for merging the attributes is similar to the one presented by Niebur and Koch in their
work [46].

At the end of all projections, the voxels salience values are normalized to a continuous range
from 0.0 to 1.0. In order to smooth the transition between the salient region and the non-salient
region, it is proposed a spatial low-pass filter with a cubic kernel of size 9 X 9 x 9. The algorithm
described in Algorithm 4 summarizes the proposed method.

Algorithm 4: saliency map creation for a point cloud.

Result: 3D saliency map.
1 foré=20,,,,:A6:906,,.do

2 for ¢ = ¢in : AP : Grpax do

3 Project the point cloud onto direction (&, ¢);

4 Run saliency map creation algorithm;

5 Re-project the salience value of the pixels onto the voxels;

6 Sum the current salience value of the voxe/ with the correspondent pixel salience
value;

7 | end

s end

9 Normalize the salience values to a continuous range of 0.0 to 1.0;

10 Filter the saliency map with a low-pass filter;

3.3 TEMPORAL CONSISTENCY

In videos, temporal consistency is defined as the resemblance between one frame and the sub-
sequent frame. This consistency is strongly explored in different ways such as for more efficiently
compressing videos [62], object tracking [63], disparity estimation [64], etc. In dynamic point
clouds, it is assumed that objects and regions do not change too much from one frame to another.
For that, it was adopted a speed-up to explore the temporal consistency among frames of a sequence.
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For a given frame, it is calculated the preferred viewing direction, or a center mode (&, ¢.),
in the (0, ) space. The goal is to find the direction with the most identified voxels, assuming the
projection region with the most pixels and back-projected voxels may correspond to a frontal un-
obstructed view of the face or of other feature is being identified. The weighted average (centroid)
of the distribution of views is taken. If at the 7-th view direction at position (¢;, ¢;) the algorithm
identified 7; voxels then

_ 2inibi _ 2i P

65— Zl'i’ll‘ ) ¢c— ZZ~}’ll' .

Assuming the center mode would not vary much from one frame to another, the search is

(3.14)

concentrated for the next frame using new values of A8, A¢, 7, while using 0,,;, = 6. — 0,
gmax = ‘95 + 6’55 ¢mz’7z = ¢£ - ¢.r) ¢max = ¢c + ¢5-

Our tests, the inter-frame mode uses &, = ¢, = 20°, Af = A¢ = 4°, and because of the more
focused search space (/N = 121) the threshold is raised to 7 = 0.5. Whenever 6, and ¢, are void, ze.,
there was no previous ROI, the azimuth varies from 0° to 360°, in steps of 10°, and the elevation
angle is varied from —70° up to 90° in steps of 10°.

In summary, with inter-frame consistency the (&, ¢) search space is narrowed around the previous-
frame centroid (6., ¢.), with smaller A&, Ag and larger 7.

3.4 ENCODING POINT CLOUDS WITH REGIONS OF INTEREST

When compressing a point cloud, there is always a trade oft between the number of bits spent to
encode the point cloud and the quality of the reconstructed point cloud at the decoder. The higher
the quality, the more bits are necessary. Salient regions are supposed to have a higher semantic or
perceptual significance than the rest of the point cloud. Therefore, an encoder that prioritizes the
quality of salient regions or regions of interest, in detriment to other regions, tends to produce
reconstructed point clouds with a better subjective quality, when compared to an encoder that
treats all regions equally, for the same number of bits.

With the explanation given in section 3.1, one can try to encode a point cloud using regions of
interest and the region adaptive hierarchical transform (RAHT) by raising the initial weights of
those voxels marked as belonging to the ROL In order to accomplish that, the region of interest

location for a given frame needs to be conveyed to the decoder.

Letb = {4,} be a binary vector with values indicating whether occupied voxels belong to the
ROI or not, at that given frame. Voxels are sorted according to their associated Morton codes. Since
neighbouring voxels have a high probability of belonging to the same category (ROI or non-ROI)
and the Morton codes tend to preserve neighbourhood, one can convert vector {4, } in a differential
vector {b,} where
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. b() =0
b;=31 b1 #b;yi>0 . (3.15)
0 b;.1=0b;i>0

The vector {b_,} is expected to have long sequences of zeros and is encoded with run-length
coding. Since the vector is differential and binary, we only encode the runs of 0s. The run size is en-
coded with an adaptive Golomb-Rice code [65]. This is a simple coder. Others, more sophisticated
coders, may be used as well.

The number of bits spent signalling the ROl is typically not significant compared to the overall
encoding bit rate, around 0.003 bits per occupied voxel (bpov).

3.5 USING SALIENCY MAPS AS SOFT REGIONS OF INTEREST

In section 3.4, it was assumed that voxels belong to only two regions: ROI and non-ROI. For
the saliency maps in this section, there is a smooth transition between voxels that are completely
salient to those that are completely non-salient. The objective is to allow for the compression of

point clouds using saliency maps.

As with the ROI the saliency map also needs to be conveyed to the decoder. In order to reduce
the number of bits spent to send the saliency map as side information, we quantized the salience
values in L levels, with that the saliency map becomes a discrete saliency map making it possible to
send it to the decoder with less bits. In summary, the saliency map is quantized in L levels as

S(v;) = [£(v)) L], (3.16)
where |.] represents the floor operation, 0 < £(v;) < 1is the saliency value the 7-th voxe/ and
S(v;) is the quantized saliency value of the 7-th voxel. Thus, the saliency map can be represented
by integers where S(v;) € {0,1,..., L —1}.

Let also w; be the weight assigned to that voxe/ v;. We assume the same weight is assigned to all
voxels with the same saliency level, i.e. we define the set of {2}, where 2; is the single weight for all
voxels such that S(v;) = k.

A point cloud # is subdivided into L sub-point clouds as

P=| )7 (3.17)
k=0
such that
P.={v; | S(v;) =k}. (3.18)

In summary, $, is the sub-point-cloud composed by voxels with salience level £, for which we

apply weights as ;. Figure 3.7 shows an example of a point cloud and its sub-point-clouds.
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(a) Original point cloud ().

(d) Pa. (e) P5. () Ps.

Figure 3.7: Point cloud "Soldier" (frame 695) and its sub-point clouds.
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The quantized saliency map is sorted according to the Morton codes of the geometry of the
corresponding voxel [60]. Morton code sorting preserves neighbourhood. We encode the saliency
values with adaptive run-length / Golomb-Rice encoding (RLGR) [65]. RLGR performs better
when there are long sequences of zeros. As neighbouring voxels tend to have similar salience, we

take differences of the quantized saliency map prior to encoding with RLGR as S[1] = S[1] and

S[n] =S8[n] - S[n-1], V> 1, (3.19)

where S[#] is the z-th differential quantized value.

The encoder in Section 3.4 attributes a weight to each voxel as a non-negative integer value.
The higher the weight, the better the quality. With the saliency map, the encoder and decoder can
compute the weight for each voxel. Unoccupied voxels have a weight of 0, occupied voxels that are
completely non-salient have a weight of 1, and completely salient occupied voxels have a weight of
a > 1. For voxels in the transition, the weight is linearly interpolated. Given the weights for each

voxel, the encoding of the point clouds follows as in Section 3.4.
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4 EXPERIMENTAL RESULTS

In order to objectively compare the results of the proposed coding method with the already
existing ones, we use the Bjontegaard delta rate (BD-Rate) and PSNR (BD-PSNR) [66] that are
objective measures used in point cloud compression to compare the rate-distortion performance
or compression efficiency of two different codecs or different settings of the same codec over a range

of bit-rate or quality values.

When evaluating a point cloud codec performance, we generally obtain a rate-distortion (RD)
curve that informs about the quality (dB) at different bit-rates (bpov). The BD-Rate and BD-
PSNR metrics use the information from the RD curves and tells how much one codec has im-
proved over the other. We can define the improvement of one codec over another as

Apsnr = BDPSNR(BRy, PSNRy, BRy, PSNR,) [dB], (4.1)

ARare = BDRate(BRy, PSN Ry, BRy, PSN R») [%], (4.2)

where BR| is a vector containing the rate obtained by codec for the correspondent quality in vec-
tor PSN Ry, BR; and PSN R; are the equivalent for codec;, Apsn g represents the variation in
quality for codec, over codec at equivalent bit-rates and A, represents the variation in rate for
codecy over codecy to achieve the same quality.

In all the experiments performed the geometry is considered lossless and geometry compression
is outside the scope of this work.

4.1 BINARY REGION-OF-INTEREST CODING

We first analyse the proposed method capability to detect the desired region of interest, which
in this work was determined to be the face of a person. In order to test our method 9 point clouds
were used: Longdress, Loot, Redandblack and Thaidancer, voxelized with a depth of 10 (z.e. 1024 %
1024 x 1024 voxels), and Andrew, David, Phil, Ricardo and Sarah, voxelized with a depth of 9 (z.c.
512 X 512 % 512 voxels), respectively [67]-[69]. The first 3 sequences have 300 frames while the last
five sequences have 318, 216, 245, 216 and 207 frames, respectively. The point cloud Thaidancer

was analysed only from a single-frame perspective.

Examples of projections of the identified faces for frames 1, 101 and 201 of each sequence are
shown in Fig. 4.1. It also includes a failure example, where face detection failed for a particular
frame. Subjectively the face is easily found in this case. A similar behaviour can be seen in the
whole test dataset.

Encoding performance was evaluated with rate-distortion curves. The PSN R (peak signal to
noise ratio) measured in the Y, U and V' channels, denoted by PSN Ry, PSN Ry and PSN Ry,
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Figure 4.1: ROl identified in frames 1, 101 and 201 of each sequence. The image shown on the second line and second
column represents a case when the algorithm was not able to detect the ROI.
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and also the PSNR measured in all R, G, and B channels (P SN R g p) are highly correlated. The
Pearson product-moment correlation coefficient [70] is shown in Table 4.1. It is apparent that
the results are very highly correlated and there is not much information to gain by repeating the
presentation of results for all channels and color spaces. Therefore, rate-distortion curves are only
shown for the Y channel for simplicity. Nevertheless, it reflects, in average, the performance of the
other color channels, for the purposes of this work.

Table 4.1: Correlation coefficient between P.S N Ry and the other metrics for all point clouds tested

PSNRpgg PSNRy PSNRy
maximum 0.9999 0.9990 0.9990
average 0.9996 0.9911 0.9922
minimum 0.9993 0.9807 0.9791

Figure 4.2 shows average rate-distortion curves for sequence Longdress. The bit-rate includes
the overhead to signal the region of interest. The weights for voxels in the ROI, wros, were chosen
as1, 2, 4, 8,16 and 32 while weights outside the ROI are 1. In Fig. 4.2(a) the PSNR was computed
for voxels inside the ROI against rate in bits per occupied voxels (bpov), while wro; is varied. As
expected when there is an increase in the w7, the quality inside the ROl increases. When wror =
1 all voxels have the exact same weight and it is the regular encoder. In Fig. 4.2(b), the PSNR was
computed for voxels outside the ROI against rate in bits per occupied voxels, while wro; is varied.
There is a very small difference among curves, in this case, because the ROI region is typically much
smaller than the rest. Re-allocating a very small bit-rate over a large area can largely increase the ROI
bit-rate, thus improving the ROI while keeping the degradation to non-ROI to a minimum. As a

result, the performance impact of increasing wgo; is not very significant in Fig. 4.2(b).

Figure 4.3 shows the average rate-distortion curves computed for one frame of each point cloud
sequence in the tested dataset. Bits for the side information are included. In Fig. 4.3(a), the PSNR
was computed only for voxels inside the ROL In Fig. 4.3(b), the PSNR was computed for voxels
outside the ROL. Figure 4.3(c) shows the standard PSNR computed for the entire point cloud and
Fig. 4.3(d) shows the weighted PSNR computed for the entire point cloud.

Table 4.2 presents Bjontegaard-delta PSNR (BD-PSNR) and rate (BD-RATE) [66] for rates
from 0.08 to 1.0 bpov. Table 4.2 reflects an average of results for all sequences and frames, uses all
voxels as reference and compares against either the ROI or non-ROI voxels. The point clouds are

coded using the proposed method and compared against the point clouds coded using the tradi-
tional (non-ROI) method.

When wgros = 1 the distortion computed for all voxels only slightly difters from the ROI and
non-RO], as expected. As the wr; increases, the distortion computed for voxels outside the ROI
remain slightly inferior to the one computed for all voxels. The performance does not drop as much
for voxels outside the ROI because the ROI is relatively small. Less than 6%, of voxels are in the
ROIL. For voxels in the ROL in the other hand, the performance significantly increases as wror
increases. If we look at the average difference between PSN Ry computed for voxels in the ROI
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Figure 4.2: Average rate-distortion curves for all frames of the sequence Longdress. The PSNR is computed only for
(a) voxels in the ROTI and (b) voxels outside the ROL
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Table 4.2: Average BD-PSNR and BD-rate in the range from 0.08 and 1 bpov with the PSNR computed inside and
outside the ROI, compared to the PSNR of all voxels.

BD-PSNR (dB) BD-Rate (%)
wros | ROI non-ROI | ROI non-ROI
2 1.03 0.09 -11.93 0.77
4 2.47 -0.10 -36.68 4.98
8 3.97 -0.24 -53.53 8.52
16 5.53 -0.34 -64.88 11.48
32 7.16 -0.41 -70.18 14.01

and that computed for all voxels, we obtain values close to the expected, ze. values computed as
1010g10 (\/U)ROI) which are 1.5051, 3.0103, 4.5154, 6.0206 and 7.5257 dB when wgoy is 2, 4, 8,
16 and 32, respectively.

In the modification shown in Section 3.1, the transform minimizes the weighted squared error
given by equation (3.1). The PSNR is computed as

(4.3)

2
PSNR(P,P,{w;}) =10 log,, ( 255 )

Enoz’se

Z.e. the ratio between the peak signal and the noise energy E,,;,. that is computed as the average
squared error. Energy can be redefined as

¥, w (K - ﬁ-)z
2 Wi

where w; is the weight of the voxel, P is the original point cloud, % is the reconstructed point

Enoz’se = (44)

cloud, Y; is the original value and Y is the reconstructed value, for the Y channel, for example, to
conform to equation (3.1), which implies the definition of a weighted PSNR, where the weight of
each voxel is wroy if it is inside the ROI and 1, otherwise. Figure 4.4 compares the average rate-
distortion curves for the sequence Loot. When wro; = 1, the weighted and the standard PSNR
are equal. However, when wgros > 1 the weighted PSNR shows better results than the standard
PSNR for the same data. This was expected since the transform is minimizing the distortion given
by equation (3.1). Which means that the transform is prioritizing those voxels with higher weights
over those with lower weights.

All results so far indicate a sizeable improvement in the ROI at the expense of a small loss to
the regions outside the ROI. The subjective analysis of quality is the main motivation behind the
use of ROI for compression. In Fig. 4.5, the point cloud Thaidancer was encoded with different
ROI weights. Subjectively, Fig. 4.5(b) seems to have a better quality since we are likely to be more
sensitive to artefacts in the face than in rest of the scene. Fig. 4.6 shows a close up of the face for the
reconstructed point clouds shown in Fig. 4.5.

Figure 4.7 shows a frame of each sequence for the same scenarios shown in Fig. 4.5, being: (a)

the ROL, (b)(d) where all voxels are equally encoded and (c)(e) where we privilege voxels in the ROI

38



PSNR, [dB]

PSNR, [dB]

55

50

IS
@

IS
S

w
a

30

25

55

50

45

N
S

35

30

25

55
L 50 i
F 45
o
S
L ‘f‘ 40
z
7]
o
o 35
—®— weight=1 —®— weight=1
L%/ —v—weigh=2 || 49 ¥ weight=2
Y, weight=4 weight=4
—4&— weight=8 —4&— weight=8
—<— weight=16 —<4— weight=16
. . . . . . | o5 . . . . . . |
0.5 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 3.5 4
Rate [bpov] Rate [bpov]
(a) PSNR in the ROI (b) PSNR outside the ROI
T 55 T
L 4 50 4
r 45
oy
S,
L !I>- 40
z
7]
o
r 35
—®— weight=1 —®— weight=1
L —¥— weight=2 i 30 —¥— weight=2 i
weight=4 weight=4
—4&— weight=8 —4&— weight=8
—4— weight=16 —<4— weight=16
. . . . . . | o5 . . . . . . |
0.5 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 35 4
Rate [bpov] Rate [bpov]
(c) PSNR over all voxels (d) Weighted PSNR over all voxels

Figure 4.3: Average rate-distortion curves.
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Figure 4.4: Average rate-distortion curves for the sequence "Loot" using the weighted PSNR

(face). Even though the point clouds in (b) have a higher overall PSNR, the point clouds in (c)
have a better PSNR for voxels in the ROI and seems to have a much higher subjective quality since

humans are very sensitive to face artefacts.

Some point clouds in Figure 4.7 (e.g. the last three) have a not-so-large PSNR gain in the ROI
against the non-ROI. This is the case where there are not many color details outside the ROI, hence
there are already fewer bits assigned to it. Therefore, it is more difficult to shift bits from the non-
ROI to the ROI voxels.
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(a) wror =1, (b) wror =16,
Qm’p =128, Q,ctep =152,
file size = 11225 b ytes. file size = 11162 b yzes.

Figure 4.5: Point cloud Thaidancer (N, = 689953) coded with different weights for voxels in the ROL The Q.

was adjusted to result in similar file sizes.

(a) Detected ROL. (b)wror =1 (c)wror =16

Figure 4.6: Detected region of interest and close up in the face of the reconstructed point clouds shown in Fig. 4.5
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WRror
1 16

Qstep 128 133

File Size | 150006 | 148974

PSNRy (overall) | 25.8 25.7

PSNRy (ROI) | 284 34.1

Qstep 128 155

File Size | 69041 | 70143

PSNRy (overall) | 31.0 30.7

PSNRy (ROI) | 28.7 342

Qstep 128 161

File Size | 32149 | 31929

PSNRy (overall) | 31.0 30.5

PSNRy (ROI) | 28.3 333

Qstep 128 197

File Size | 47316 | 47647

PSNRy (overall) 26.3 25.0

PSNRy (ROI) | 282 | 319

Qstep 128 206

File Size | 33192 | 33374

PSNRy (overall) | 25.2 244

PSNRy (ROI) | 29.4 329

Qstep 128 401

File Size | 14546 | 14637

PSNRy (overall) | 32.5 29.9

PSNRy (ROI) | 29.0 30.0

Qstep 128 402

File Size | 10675 | 10690

PSNRy (overall) | 32.5 30.0

PSNRy (ROI) | 29.0 30.8

Qstep 128 430

File Size | 14833 | 14802

PSNRy (overall) 31.8 29.8

PSNRy (ROI) | 29.1 29.8

®

Figure 4.7: Frames encoded with wros equals to 1 and 16. The quantization step size was adjusted to yield similar
encoded file sizes. (a) The ROI; decoded point cloud for (b) wror = 1and (¢) wror = 16; (d) close-up of (b); (e) close
up of (c); (f) small information table with quantization step sizes, encoded file size (in bits) and 2SN Ry (in dB).
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4.2 SOFT-REGION-OF-INTEREST CODING

In order to test the proposed projection-based method for point cloud saliency map creation,
5 point clouds were used: Longdress, Loot, Soldier, Boxer, David, all voxelized with depth 10 (i.c.
1024 x 1024 x 1024 voxels) [67]-[69].

The results are presented in Figs. 4.8 trough 4.13 as a saliency map (7.¢. gray scale) and in a hot-
cold map, where colors closer to red represent a higher saliency value and colors closer to blue are

associated with a lower saliency value.

It is noticeable that, in all the examples, the most salient region contains the face, or parts of it,
and, in some cases, (as in Fig 4.11 and Fig. 4.13) a region close to the face is also considered salient.

In the tests carried, the quantization step was varied from 2 to 128 and we used L = 5. The
ROI weights ({2 }) are ap = 1 and

ap =k (4.5)

L-1
where « is the maximum weight we apply.
Let the point cloud # be encoded with an encoder denoted as COD(P, S(v;), a, L), using

saliency S(v;) and parameters @ and L, the encoder uses the RAHT transform, as described in
section 2.2, with RLGR [65]. The reconstructed point cloud is then

$ =CODN(COD(P, S(v;), 2, L)), (4.6)
and the rate we achieve is
r=RATE(COD(P, S(v;), 2, L)), (4.7)
and the distortion is
d, = PSNR(Py, Pp, ap). (4.8)

For the regular encoder we have
$ = COD(COD(P,1,1,1)), (4.9)
where the parameters are all 1, with the rate being
r"=RATE(COD(®,1,1,1)), (4.10)

and the calculated distortion is
d, = PSNR(P;,, P}, 1). (4.11)

The rate is computed as bits per occupied voxel (bpov) and the quality of the reconstructed point
cloud by the peak signal to noise ratio of the luminance channel (PS N Ry), where #y, is the original
k-th sub-point-cloud, P, is the k-th sub-point-cloud reconstructed using the proposed method, 732
is the k-th sub-point-cloud reconstructed using the traditional (i.e. non-ROI coding) method, d;
is the distortion for the encoded k-th sub-point-cloud using the proposed method and d, is the
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Figure 4.8: A view of point cloud "David" and its saliency and hot-cold maps.

Figure 4.9: A view of point cloud "Boxer" and its saliency and hot-cold maps.
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Figure 4.10: A view of point cloud "Loot" and its saliency and hot-cold maps.

Figure 4.11: A view of point cloud "Longdress" and its saliency and hot-cold maps.
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Figure 4.12: A view of point cloud "Soldier" (frame 537) and its saliency and hot-cold maps.

Figure 4.13: A view of point cloud "Soldier” (frame 695) and its saliency and hot-cold maps.
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distortion for the encoded k-th sub-point-cloud using the traditional method. Both, d;, and d; are
calculated as in equation (4.3).

In table 4.3, each cell y,, ; is calculated as
Yak = BDPSNR({r'}, {d,}, {r}, {de}) (4.12)

where the sets are composed by one point for each quantization step used, each row in table 4.3
corresponds to an « and each column to a sub-point-cloud corresponding to the £-th saliency level.

Table 4.3 summarizes the encoder performance using the saliency maps. The results present
the average P SN Ry difterence (BD-PSNR) [66] obtained for the point clouds tested in this part
of the work, comparing those curves that prioritize the ROI (« > 1) against the curves that equally
treats all voxels (¢ = 1). One can observe that as the « increases, the quality of reconstructed voxels
that are completely non-salient (S(v;) = 0) decreases, while the quality of those that are salient
(S(v;) > 0) increases at a larger rate (as in Fig. 4.14). The gain in quality is higher for higher values
of S(v;), as expected (see Fig. 4.15). The higher the value of «, the more bits are spent to encode
the ROl in detriment to non salient voxels. As there are fewer voxels in the ROI compared to those
outside the ROI, a small decrease in the quality of the voxels outside the ROI results in a big increase
in the quality of those inside. The number of bits spent to encode the saliency map is accounted
in the overall bit rate, except when « = 1, since there is no need to convey the saliency map to the
decoder.

Table 4.3: Average BD-PSNR (dB) for all the 5 point clouds, for each S(v;) comparing the curves with « > 1 against

those when « = 1 for all point clouds tested in this work.

BD-PSNR (dB)

a 7)0 P1 Py 7)3 Py
2 | -043 -048 135 116 1.20
4 |-054 130 243 265 3.06
8 | -0.65 240 3838 439 5.06
16 | -0.82 3.83 5S.64 7.07 7.42
32| -1.04 560 782 961 10.28
64 | -1.31 7.79 10.61 12.23 16.43

Figure 4.14(a) shows results for rate-distortion curves for the point cloud "Longdress” using
the weighted PS N R. The weighted PS N R uses the weights of each voxe/ to compute the average
squared error as it was shown previously. Higher values of « produces better results in the recon-
structed point cloud for the voxels inside the RO, as it was shown in section 4.1 that the encoder
tries to maximize the weighted 2SN R for a given rate.

In Fig. 4.16, the point cloud "Longdress” is encoded with different 2. With 2 = 1 the point
cloud is encoded with a quantization step of 128. For 2 = 16 the quantization step is adjusted to
212 so that both encoded files have the same bit-rate of 0.175 bpov. Subjectively, Fig. 4.16(b) seems
to have a better quality. Figure 4.17 shows a close up of the salient region for the reconstructed
point clouds shown in Fig. 4.16.
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Figure 4.14: Rate-distortion curves for the point cloud "Longdress” for different values of the ROI weights. The dis-
tortion is computed using the weighted PSNR in (a) and using the standard PSNR in (b).
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Figure 4.16: Point cloud Longdress coded with different weights for voxels in the ROI. The Q,ze p was adjusted in order

that the files would have similar sizes.
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Figure 4.17: Close up in the face of the reconstructed point clouds shown in Fig. 4.16
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5 CONCLUSIONS

The development of this project enabled the study of algorithms for the detection of regions
of interest in point clouds, more specifically face detection and saliency map creation. It was pro-
posed a framework that explores existing techniques for processing and analysis of two-dimensional
images and videos, in order to perform the detection of ROI in point clouds.

There are methods proposed in the literature for identifying RO], classifying objects in point
clouds or calculating saliency maps that make use of various techniques. However, there are none
that make use of two-dimensional projections to achieve the proposed objectives. Thus, the sug-

gested method innovates and presented successful results.

The developed framework was able to process on 2D projections and to extrapolate the ob-
tained results to 3D point clouds. It was also able to combine the processing performed from mul-
tiple views and to apply the obtained results to the correspondent voxels.

By modifying the distortion measure to a weighted-distortion measure, ROI coding was in-
troduced with RAHT transform coding. However, any other point cloud coding method that
optimizes the weighted distortion measure could be used. The results show an improvement in the
ROI PSNR and an increase in the quality of the voxels inside the selective regions of higher levels
of interest for the soft ROI. Higher weights results in better quality. The gain in quality was found
to be, on average, 1.03, 2.47, 3.97, 5.53 and 7.16 dB when the weight attributed to the ROI was 2,
4, 8,16 and 32, respectively, for the binary regions of interest. For the soft regions of interest, the
average gain was 1.20, 3.06, 5.06, 7.42,10.28 and 16.43 dB when the maximum weight attributed
to the ROI was 2, 4, 8, 16, 32 and 64, respectively, for the voxels with the maximum weight.

The relatively small ROI sizes allow for a large improvement of ROI voxels at the expense of a
very small degradation to non-ROI voxels. The real motivation is the clearly improved subjective
quality of the ROI-coded point clouds, as viewers often prefer to preserve the face quality and have
a hard time noticing a slightly higher distortion in textured areas of little interest.

5.1 FUTURE WORK

Future work can include optimizing the ROI weights using perceptual studies, optimizing the
side information and applying ROI coding to point cloud geometry. It may also include a way to
improve the temporal consistency by using motion vectors to try to further reduce the computa-

tional cost when processing a frame sequence.

Other possible improvement to be studied is to fuse 2D processing with 3D processing, making
it a hybrid framework in order to reduce the number of undetected faces. For example, this could
be done by finding the nose and then generating an sphere around it to get all the voxels in the face,
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similar to what was done in [20]. Fig. 5.1 shows a comparison of the detected faces between the
method used in this work and an initial version the hybrid method.

(a) Standard projection-based method. (b) Preliminary hybrid method.

Figure 5.1: Comparison between the projection-based method used in this work and the preliminary hybrid method.
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